TY - JOUR
T1 - α-Synuclein structural features inhibit harmful polyunsaturated fatty acid oxidation, suggesting roles in neuroprotection
AU - De Franceschi, Giorgia
AU - Fecchio, Chiara
AU - Sharon, Ronit
AU - Schapira, Anthony H.V.
AU - Proukakis, Christos
AU - Bellotti, Vittorio
AU - De Laureto, Patrizia Polverino
N1 - Publisher Copyright:
© 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
PY - 2017/4/28
Y1 - 2017/4/28
N2 - α-Synuclein (aS) is a protein abundant in presynaptic nerve terminals in Parkinson disease (PD) and is a major component of intracellular Lewy bodies, the pathological hallmark of neurodegenerative disorders such as PD. Accordingly, the relationships between aS structure, its interaction with lipids, and its involvement in neurodegeneration have attracted great interest. Previously, we reported on the interaction of aS with brain polyunsaturated fatty acids, in particular docosahexaenoic acid (DHA). aS acquires an α-helical secondary structure in the presence of DHA and, in turn, affects DHA structural and aggregative properties. Moreover, aS forms a covalent adduct with DHA. Here, we provide evidence that His-50 is the main site of this covalent modification. To better understand the role of His-50, we analyzed the effect of DHA on a S-derived species: a naturally occurring variant, H50Q; an oxidized aS in which all methionines are sulfoxides (aS4ox); a fully lysine-alkylated aS (acetyl-aS); and aS fibrils, testing their ability to be chemically modified by DHA. We show, by mass spectrometry and spectroscopic techniques, that H50Q and aS4ox are modified by DHA, whereas acetyl-aS is not. We correlated this modification with aS structural features, and we suggest a possible functional role of aS in sequestering the early peroxidation products of fatty acids, thereby reducing the level of highly reactive lipid species. Finally, we show that fibrillar aS loses almost 80% of its scavenging activity, thus lacking a potentially protective function. Our findings linking aS scavenging activity with brain lipid composition suggest a possible etiological mechanism in some neurodegenerative disorders.
AB - α-Synuclein (aS) is a protein abundant in presynaptic nerve terminals in Parkinson disease (PD) and is a major component of intracellular Lewy bodies, the pathological hallmark of neurodegenerative disorders such as PD. Accordingly, the relationships between aS structure, its interaction with lipids, and its involvement in neurodegeneration have attracted great interest. Previously, we reported on the interaction of aS with brain polyunsaturated fatty acids, in particular docosahexaenoic acid (DHA). aS acquires an α-helical secondary structure in the presence of DHA and, in turn, affects DHA structural and aggregative properties. Moreover, aS forms a covalent adduct with DHA. Here, we provide evidence that His-50 is the main site of this covalent modification. To better understand the role of His-50, we analyzed the effect of DHA on a S-derived species: a naturally occurring variant, H50Q; an oxidized aS in which all methionines are sulfoxides (aS4ox); a fully lysine-alkylated aS (acetyl-aS); and aS fibrils, testing their ability to be chemically modified by DHA. We show, by mass spectrometry and spectroscopic techniques, that H50Q and aS4ox are modified by DHA, whereas acetyl-aS is not. We correlated this modification with aS structural features, and we suggest a possible functional role of aS in sequestering the early peroxidation products of fatty acids, thereby reducing the level of highly reactive lipid species. Finally, we show that fibrillar aS loses almost 80% of its scavenging activity, thus lacking a potentially protective function. Our findings linking aS scavenging activity with brain lipid composition suggest a possible etiological mechanism in some neurodegenerative disorders.
UR - http://www.scopus.com/inward/record.url?scp=85018335432&partnerID=8YFLogxK
U2 - 10.1074/jbc.M116.765149
DO - 10.1074/jbc.M116.765149
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 28232489
AN - SCOPUS:85018335432
SN - 0021-9258
VL - 292
SP - 6927
EP - 6937
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 17
ER -