TY - JOUR
T1 - β-Subunit of the voltage-gated Ca2+ channel Cav1.2 drives signaling to the nucleus via H-Ras
AU - Servili, Evrim
AU - Trus, Michael
AU - Maayan, Daphne
AU - Atlas, Daphne
N1 - Publisher Copyright:
© 2018 National Academy of Sciences. All Rights Reserved.
PY - 2018/9/11
Y1 - 2018/9/11
N2 - Depolarization-induced signaling to the nucleus by the L-type voltage-gated calcium channel Cav1.2 is widely assumed to proceed by elevating intracellular calcium. The apparent lack of quantitative correlation between Ca2+ influx and gene activation suggests an alternative activation pathway. Here, we demonstrate that membrane depolarization of HEK293 cells transfected with α11.2/β2b/α2δ subunits (Cav1.2) triggers c-Fos and MeCP2 activation via the Ras/ERK/CREB pathway. Nuclear signaling is lost either by absence of the intracellular β2 subunit or by transfecting the cells with the channel mutant α11.2W440A/β2b/α2δ, a mutation that disrupts the interaction between α11.2 and β2 subunits. Pulldown assays in neuronal SH-SY5Y cells and in vitro binding of recombinant H-Ras and β2 confirmed the importance of the intracellular β2 subunit for depolarization-induced gene activation. Using a Ca2+-impermeable mutant channel α11.2L745P/ β2b/α2δ or disrupting Ca2+/calmodulin binding to the channel using the channel mutant α11.2I1624A/β2b/α2δ, we demonstrate that depolarization-induced c-Fos and MeCP2 activation does not depend on Ca2+ transport by the channel. Thus, in contrast to the paradigm that elevated intracellular Ca2+ drives nuclear signaling, we show that Cav1.2-triggered c-Fos or MeCP2 is dependent on extracellular Ca2+ and Ca2+ occupancy of the open channel pore, but is Ca2+-influx independent. An indispensable β-subunit interaction with H-Ras, which is triggered by conformational changes at α11.2 independently of Ca2+ flux, brings to light a master regulatory role of β2 in transcriptional activation via the ERK/CREB pathway. This mode of H-Ras activation could have broad implications for understanding the coupling of membrane depolarization to the rapid induction of gene transcription.
AB - Depolarization-induced signaling to the nucleus by the L-type voltage-gated calcium channel Cav1.2 is widely assumed to proceed by elevating intracellular calcium. The apparent lack of quantitative correlation between Ca2+ influx and gene activation suggests an alternative activation pathway. Here, we demonstrate that membrane depolarization of HEK293 cells transfected with α11.2/β2b/α2δ subunits (Cav1.2) triggers c-Fos and MeCP2 activation via the Ras/ERK/CREB pathway. Nuclear signaling is lost either by absence of the intracellular β2 subunit or by transfecting the cells with the channel mutant α11.2W440A/β2b/α2δ, a mutation that disrupts the interaction between α11.2 and β2 subunits. Pulldown assays in neuronal SH-SY5Y cells and in vitro binding of recombinant H-Ras and β2 confirmed the importance of the intracellular β2 subunit for depolarization-induced gene activation. Using a Ca2+-impermeable mutant channel α11.2L745P/ β2b/α2δ or disrupting Ca2+/calmodulin binding to the channel using the channel mutant α11.2I1624A/β2b/α2δ, we demonstrate that depolarization-induced c-Fos and MeCP2 activation does not depend on Ca2+ transport by the channel. Thus, in contrast to the paradigm that elevated intracellular Ca2+ drives nuclear signaling, we show that Cav1.2-triggered c-Fos or MeCP2 is dependent on extracellular Ca2+ and Ca2+ occupancy of the open channel pore, but is Ca2+-influx independent. An indispensable β-subunit interaction with H-Ras, which is triggered by conformational changes at α11.2 independently of Ca2+ flux, brings to light a master regulatory role of β2 in transcriptional activation via the ERK/CREB pathway. This mode of H-Ras activation could have broad implications for understanding the coupling of membrane depolarization to the rapid induction of gene transcription.
KW - C-Fos
KW - Cav1.2
KW - Excitation-transcription coupling
KW - H-Ras
KW - MeCp2
UR - http://www.scopus.com/inward/record.url?scp=85053017858&partnerID=8YFLogxK
U2 - 10.1073/pnas.1805380115
DO - 10.1073/pnas.1805380115
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 30150369
AN - SCOPUS:85053017858
SN - 0027-8424
VL - 115
SP - E8624-E8633
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 37
ER -