TY - JOUR
T1 - A chronic low dose of Δ9-tetrahydrocannabinol (THC) restores cognitive function in old mice
AU - Bilkei-Gorzo, Andras
AU - Albayram, Onder
AU - Draffehn, Astrid
AU - Michel, Kerstin
AU - Piyanova, Anastasia
AU - Oppenheimer, Hannah
AU - Dvir-Ginzberg, Mona
AU - Rácz, Ildiko
AU - Ulas, Thomas
AU - Imbeault, Sophie
AU - Bab, Itai
AU - Schultze, Joachim L.
AU - Zimmer, Andreas
N1 - Publisher Copyright:
© 2017 Nature America, Inc., part of Springer Nature. All rights reserved.
PY - 2017/6/1
Y1 - 2017/6/1
N2 - The balance between detrimental, pro-aging, often stochastic processes and counteracting homeostatic mechanisms largely determines the progression of aging. There is substantial evidence suggesting that the endocannabinoid system (ECS) is part of the latter system because it modulates the physiological processes underlying aging. The activity of the ECS declines during aging, as CB1 receptor expression and coupling to G proteins are reduced in the brain tissues of older animals and the levels of the major endocannabinoid 2-arachidonoylglycerol (2-AG) are lower. However, a direct link between endocannabinoid tone and aging symptoms has not been demonstrated. Here we show that a low dose of Δ9 -tetrahydrocannabinol (THC) reversed the age-related decline in cognitive performance of mice aged 12 and 18 months. This behavioral effect was accompanied by enhanced expression of synaptic marker proteins and increased hippocampal spine density. THC treatment restored hippocampal gene transcription patterns such that the expression profiles of THC-treated mice aged 12 months closely resembled those of THC-free animals aged 2 months. The transcriptional effects of THC were critically dependent on glutamatergic CB1 receptors and histone acetylation, as their inhibition blocked the beneficial effects of THC. Thus, restoration of CB1 signaling in old individuals could be an effective strategy to treat age-related cognitive impairments.
AB - The balance between detrimental, pro-aging, often stochastic processes and counteracting homeostatic mechanisms largely determines the progression of aging. There is substantial evidence suggesting that the endocannabinoid system (ECS) is part of the latter system because it modulates the physiological processes underlying aging. The activity of the ECS declines during aging, as CB1 receptor expression and coupling to G proteins are reduced in the brain tissues of older animals and the levels of the major endocannabinoid 2-arachidonoylglycerol (2-AG) are lower. However, a direct link between endocannabinoid tone and aging symptoms has not been demonstrated. Here we show that a low dose of Δ9 -tetrahydrocannabinol (THC) reversed the age-related decline in cognitive performance of mice aged 12 and 18 months. This behavioral effect was accompanied by enhanced expression of synaptic marker proteins and increased hippocampal spine density. THC treatment restored hippocampal gene transcription patterns such that the expression profiles of THC-treated mice aged 12 months closely resembled those of THC-free animals aged 2 months. The transcriptional effects of THC were critically dependent on glutamatergic CB1 receptors and histone acetylation, as their inhibition blocked the beneficial effects of THC. Thus, restoration of CB1 signaling in old individuals could be an effective strategy to treat age-related cognitive impairments.
UR - http://www.scopus.com/inward/record.url?scp=85020264484&partnerID=8YFLogxK
U2 - 10.1038/nm.4311
DO - 10.1038/nm.4311
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 28481360
AN - SCOPUS:85020264484
SN - 1078-8956
VL - 23
SP - 782
EP - 787
JO - Nature Medicine
JF - Nature Medicine
IS - 6
ER -