A computationally efficient calibration algorithm for the LOFAR radio astronomical array

Yuntao Wu, Amir Leshem, Stefan J. Wijnholds

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

In this paper, the problem of self-calibration for large astronomical arrays such as the Dutch Low Frequency Array (LOFAR) is considered. We assume direction dependent gain and phase errors which need to be estimated and calibrated out. Combining the subspace fitting and least square approaches, the signal subspace of the received single short-term interval (STI) sample data of the LOFAR is used to build a cost function whose minimizer is a statistically efficient estimator of the unknown parameters-the gains and phases of the telescopes. Subsequently, an iterative algorithm for finding the minimum of the cost function is presented and the unknown calibration parameters of both the core stations and the external subarray are separated. As a result, the computational complexity of the proposed method is significantly reduced compared to the existing methods based on a direct covariance fitting. Finally, the performance of the proposed method is compared with the conventional peeling method in computer simulation. An example for calibrating the core of the LOFAR array on Cyg A is also provided.

Original languageEnglish
Title of host publication2014 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2014
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages5402-5406
Number of pages5
ISBN (Print)9781479928927
DOIs
StatePublished - 2014
Externally publishedYes
Event2014 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2014 - Florence, Italy
Duration: 4 May 20149 May 2014

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
ISSN (Print)1520-6149

Conference

Conference2014 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2014
Country/TerritoryItaly
CityFlorence
Period4/05/149/05/14

Keywords

  • Array Self-Calibration
  • LOFAR
  • Radio Astronomy Arrays
  • Subspace Fitting

Fingerprint

Dive into the research topics of 'A computationally efficient calibration algorithm for the LOFAR radio astronomical array'. Together they form a unique fingerprint.

Cite this