A detailed protocol for chromatin immunoprecipitation in the yeast Saccharomyces cerevisiae.

Melanie Grably*, David Engelberg

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

9 Scopus citations

Abstract

Critical cellular processes such as DNA replication, DNA damage repair, and transcription are mediated and regulated by DNA-binding proteins. Many efforts have been invested therefore in developing methods that monitor the dynamics of protein-DNA association. As older techniques such as DNA footprinting, and electrophoretic mobility shift assays (EMSA) could be applied mostly in vitro, the development of the chromatin immunoprecipitation (ChIP) method, which allows quantitative measurement of protein-bound DNA most accurately in vivo, revolutionized our capabilities of understanding the mechanisms underlying the aforementioned processes. Furthermore, this powerful tool could be applied at the genomic-scale providing a global picture of the protein-DNA complexes at the entire genome.The procedure is conceptually simple; involves rapid crosslinking of proteins to DNA by the addition of formaldehyde to the culture, shearing the DNA and immunoprecipitating the protein of interest while covalently bound to its DNA targets. Following decrosslinking, DNA that was coimmunoprecipitated could be amplified by PCR or could serve as a probe of a genomic microarray to identify all DNA fragments that were bound to the protein.Although simple in principle, the method is not trivial to implement and the results might be misleading if proper controls are not included in the experiment. In this chapter, we provide therefore a highly detailed protocol of ChIP assay as is applied successfully in our laboratory. We pay special attention to describe every small detail, in order that any investigator could readily and successfully apply this important and powerful technology.

Original languageEnglish
Pages (from-to)211-224
Number of pages14
JournalMethods in Molecular Biology
Volume638
DOIs
StatePublished - 2010

Fingerprint

Dive into the research topics of 'A detailed protocol for chromatin immunoprecipitation in the yeast Saccharomyces cerevisiae.'. Together they form a unique fingerprint.

Cite this