TY - JOUR
T1 - A high-cholesterol diet increases the association between caveolae and insulin receptors in rat liver
AU - Hahn-Obercyger, Michal
AU - Graeve, Lutz
AU - Madar, Zecharia
PY - 2009
Y1 - 2009
N2 - Caveolin-1, a component of caveolae, regulates signaling pathway compartmentalization by interacting with tyrosine (Tyr) kinase receptors and their substrates. Perturbations in caveolae lipid composition have been shown in vitro to displace proteins from lipid microdomains, thereby altering their functionality and subsequent downstream signaling. The role of caveolin-1 in insulin receptor (IR) signaling has been widely investigated in vitro mainly in 3T3-L1 adipocyte cells. However, in vivo experiments investigating this connection in liver tissue have not been carried out. The objective of the present study was to investigate the effects of a high-cholesterol diet on caveolin-1 expression and IR localization and activity in the rat liver. Compared with a standard diet, rats fed with diet rich in cholesterol significantly altered liver caveolae by increasing both caveolin-1 (66%, P < 0.05) and caveolin-2 (55%, P < 0.05) expression while caveolin-1 mRNA levels were reduced. Concomitantly, a 25% increase in localization of the caveolae-resident signaling protein IR was observed. The distribution of caveolar and noncaveolar phosphorylated IR was unaffected but insulin-induced IR activation was significantly enhanced following consumption of the high-cholesterol diet (120%, P < 0.001). However, the downstream molecules IRS-1 and Akt have shown impaired activity in cholesterol-fed rats suggesting insulin resistance condition. Insulin stimulation failed to induce Tyr phosphorylation of caveolin-1 in cholesterol-fed rats. These findings suggest a mechanism by which a high-cholesterol diet altered caveolin-1 expression in vivo accompanied by altered IR localization and activity.
AB - Caveolin-1, a component of caveolae, regulates signaling pathway compartmentalization by interacting with tyrosine (Tyr) kinase receptors and their substrates. Perturbations in caveolae lipid composition have been shown in vitro to displace proteins from lipid microdomains, thereby altering their functionality and subsequent downstream signaling. The role of caveolin-1 in insulin receptor (IR) signaling has been widely investigated in vitro mainly in 3T3-L1 adipocyte cells. However, in vivo experiments investigating this connection in liver tissue have not been carried out. The objective of the present study was to investigate the effects of a high-cholesterol diet on caveolin-1 expression and IR localization and activity in the rat liver. Compared with a standard diet, rats fed with diet rich in cholesterol significantly altered liver caveolae by increasing both caveolin-1 (66%, P < 0.05) and caveolin-2 (55%, P < 0.05) expression while caveolin-1 mRNA levels were reduced. Concomitantly, a 25% increase in localization of the caveolae-resident signaling protein IR was observed. The distribution of caveolar and noncaveolar phosphorylated IR was unaffected but insulin-induced IR activation was significantly enhanced following consumption of the high-cholesterol diet (120%, P < 0.001). However, the downstream molecules IRS-1 and Akt have shown impaired activity in cholesterol-fed rats suggesting insulin resistance condition. Insulin stimulation failed to induce Tyr phosphorylation of caveolin-1 in cholesterol-fed rats. These findings suggest a mechanism by which a high-cholesterol diet altered caveolin-1 expression in vivo accompanied by altered IR localization and activity.
KW - Caveolin
KW - Insulin signaling
KW - Lipid rafts
UR - http://www.scopus.com/inward/record.url?scp=63449120835&partnerID=8YFLogxK
U2 - 10.1194/jlr.M800441-JLR200
DO - 10.1194/jlr.M800441-JLR200
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 18757837
AN - SCOPUS:63449120835
SN - 0022-2275
VL - 50
SP - 98
EP - 107
JO - Journal of Lipid Research
JF - Journal of Lipid Research
IS - 1
ER -