A lattice problem in quantum NP

Dorit Aharonov*, Oded Regev

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

18 Scopus citations

Abstract

We consider coGapSVP√n, a gap version of the shortest vector in a lattice problem. This problem is known to be in AM ∩ coNP but is not known to be in NP or in MA. We prove that it lies inside QMA, the quantum analogue of NP. This is the first non-trivial upper bound on the quantum complexity of a lattice problem. The proof relies on two novel ideas. First, we give a new characterization of QMA, called QMA+. Working with the QMA+ formulation allows us to circumvent a problem which arises commonly in the context of QMA: the prover might use entanglement between different copies of the same state in order to cheat. The second idea involves using estimations of autocorrelation functions for verification. We make the important observation that autocorrelation functions are positive definite functions and using properties of such functions we severely restrict the prover's possibility to cheat. We hope that these ideas will lead to further developments in the field.

Original languageEnglish
Title of host publicationProceedings - 44th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2003
PublisherIEEE Computer Society
Pages210-219
Number of pages10
ISBN (Electronic)0769520405
DOIs
StatePublished - 2003
Event44th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2003 - Cambridge, United States
Duration: 11 Oct 200314 Oct 2003

Publication series

NameProceedings - Annual IEEE Symposium on Foundations of Computer Science, FOCS
Volume2003-January
ISSN (Print)0272-5428

Conference

Conference44th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2003
Country/TerritoryUnited States
CityCambridge
Period11/10/0314/10/03

Bibliographical note

Publisher Copyright:
© 2003 IEEE.

Keywords

  • Algorithm design and analysis
  • Autocorrelation
  • Computer science
  • Cryptography
  • Lattices
  • Polynomials
  • Quantum computing
  • Quantum mechanics
  • Upper bound

Fingerprint

Dive into the research topics of 'A lattice problem in quantum NP'. Together they form a unique fingerprint.

Cite this