A liposomal method for evaluation of inhibitors of H+-coupled multidrug transporters

Donald L. Melchior*, Shlomo Brill, George E. Wright, Shimon Schuldiner

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

Introduction: This paper describes a novel technique, Fluorosomes, applied to investigating the interaction of antimicrobials with proton driven microbial efflux transporters. These transporters remove toxic compounds from the cytoplasm, including antibiotics and are involved in antibiotic resistance. Methods: To assess transporter activity we developed a methodology to generate a proton gradient across Fluorosome membranes into which selected purified fully active efflux transporters were reconstituted. The interior of the Fluorosome particle (a unilamellar liposome) contains a fluorescent drug sensing probe whose fluorescence is quantitatively quenched by transporter substrates. Using an injecting fluorescence plate reader to initiate a proton gradient and to monitor subsequent fluorescence change, real time transport kinetics can be followed and transport inhibition characterized. Results: Fluorosomes containing the Escherichia coli EmrE efflux pump demonstrated transport of two known EmrE substrates, ethidium and methyl viologen upon creation of a proton gradient. For Fluorosomes containing the inactive EmrE mutant, E14Q, no transport was observed. When the gradient was fully collapsed by the addition of nigericin, full inhibition of substrate transport was observed. The IC50 for nigericin inhibition of ethidium was shown to be 0.71μM. Discussion: We have for the first time prepared and validated a single bacterial efflux pump assay, Fluorosome-. trans-EmrE, that faithfully mimics properties of the transporter in vivo. It is faster than whole cell screens, simple to use, amenable to robotics, and reports on very specific targets. We have demonstrated proof of principle with EmrE and have created the first of an intended series of proton driven Fluorosomes.

Original languageEnglish
Pages (from-to)53-57
Number of pages5
JournalJournal of Pharmacological and Toxicological Methods
Volume77
DOIs
StatePublished - 1 Jan 2016

Bibliographical note

Publisher Copyright:
© 2015 Elsevier Inc.

Keywords

  • Bacterial efflux pumps
  • EmrE
  • Fluorescence
  • Fluorosomes
  • Liposomes
  • Membrane reconstitution
  • Methods
  • Model mimetic systems
  • Proton driven drug transport
  • Transport inhibitors

Fingerprint

Dive into the research topics of 'A liposomal method for evaluation of inhibitors of H+-coupled multidrug transporters'. Together they form a unique fingerprint.

Cite this