A lower bound on ground state entanglement between two regions for a free field

Benni Reznik, Alex Retzker, Jonathan Silman

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

In discrete models, such as spin chains, the entanglement between a pair of particles in a chain has been shown to vanish beyond a certain separation. In the continuum, a quantum field ø(x) at a point represents a single degree of freedom, thus at a region of finite size there are infinite separate degrees of freedom. We show that as a consequence, in contrast to discrete models, the ground state of a free, quantized and relativistic field exhibits entanglement between any pair of arbitrarily separated finite regions. We also provide a lower bound on the decay rate of the entanglement as a function of the separation length between the regions and briefly discuss the physical reasons behind this different behaviour of discrete and continuous systems.

Original languageAmerican English
Pages (from-to)833-840
Number of pages8
JournalJournal of Modern Optics
Volume51-6
Issue number7
DOIs
StatePublished - 2004
Externally publishedYes

Bibliographical note

Funding Information:
We thank Y. Aharonov, L. Vaidman and S. Popescu for helpful comments, J. I. Cirac for suggesting the analogy with ion chains in a trap, I. Klich for helpful ideas and A. Botero for many invaluable discussions. We acknowledge support from the Israel Science Foundation (Grant No. 62/01-1).

Fingerprint

Dive into the research topics of 'A lower bound on ground state entanglement between two regions for a free field'. Together they form a unique fingerprint.

Cite this