A molecular analysis of sand fly blood meals in a visceral leishmaniasis endemic region of northwestern Ethiopia reveals a complex host-vector system

Solomon Yared, A. Gebresilassie, Ibrahim Abbasi, Essayas Aklilu, Oscar D. Kirstein, Meshesha Balkew, Adam S. Brown, Ronald M. Clouse*, Alon Warburg, A. Hailu, Teshome Gebre-Michael

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

19 Scopus citations

Abstract

Background: Visceral leishmaniasis (VL, or “kala-azar”) is a major cause of disability and death, especially in East Africa. Its vectors, sand flies (Diptera: Psychodidae: Phlebotominae), are poorly controlled and guarded against in these regions, owing in part to a lack of understanding about their feeding behavior. Methods: A total of 746 freshly fed female sand flies were collected in five population centers in Kafta Humera (northwestern Ethiopia), where VL is endemic. Flies were collected from habitats that ranged from inside houses to open fields, using light traps and sticky traps. Sources of sand fly blood meals were identified using enzyme-linked immunosorbent assays (ELISA) and DNA amplification with reverse-line blot analysis (PCR-RLB); 632 specimens were screened using ELISA, 408 of which had identifiable blood meals, and 114 were screened using PCR-RLB, 53 of which yielded identifications. Fly species determinations were based on morphology, and those specimens subjected to PCR-RLB were also screened for Leishmania parasites using conventional PCR to amplify the nuclear marker ITS1 (internal transcribed spacer 1) with Leishmania-specific primers. Results: More than three-fourths of all sand flies collected were Phlebotomus orientalis, and the remaining portion was comprised of nine other species. Nearly two-thirds of P. orientalis specimens were collected at village peripheries. The most common blood source for all flies was donkey (33.9% of all identifications), followed by cow (24.2%), human (17.6%), dog (11.8%), and goat or sheep (8.6%); mixtures of blood meals from different sources were found in 28.2% of all flies screened. Unidentified blood meals, presumably from wildlife, not domestic animals, were significantly higher in farm fields. Leishmania parasites were not detected in any of the 114 flies screened, not surprising given an expected infection rate of 1–5 out of 1,000. Meals that included a mixture of human and cow blood were significantly more frequent relative to all cow meals than human blood meals were to non-cow meals, suggesting a zoopotentiative interaction between cows and humans in this system. Conclusions: Habitat and host preferences of sand fly vectors in Kafta Humera confirmed the finding of previous reports that the main vector in the region, Phlebotomus orientalis, is a highly opportunistic feeder that prefers large animals and is most commonly found at village peripheries. These results were similar to those of a previous study conducted in a nearby region (Tahtay Adiabo), except for the role of cattle on the prevalence of human blood meals. Preliminary examinations of blood meal data from different settings point to the need for additional surveys and field experiments to understand the role of livestock on biting risks.

Original languageEnglish
Article numbere02132
JournalHeliyon
Volume5
Issue number7
DOIs
StatePublished - Jul 2019

Bibliographical note

Funding Information:
This study was supported by Bill and Melinda Gates Foundation Global Health Program (grant number OPPGH5336 ).

Publisher Copyright:
© 2019 The Authors

Keywords

  • Agriculture
  • Ecology
  • Molecular biology
  • Zoology

Fingerprint

Dive into the research topics of 'A molecular analysis of sand fly blood meals in a visceral leishmaniasis endemic region of northwestern Ethiopia reveals a complex host-vector system'. Together they form a unique fingerprint.

Cite this