Abstract
Null alleles of the gene encodingNEMO(NF-κB essential modulator) are lethal in hemizygous mice and men, whereas hypomorphic alleles typically cause a syndrome of immune deficiency and ectodermal dysplasia. Here we describe an allele of Ikbkg in mice that impaired Toll-like receptor signaling, lymph node formation, development ofmemory and regulatory T cells, and Ig production, but did not cause ectodermal dysplasia. Degradation of IκBα, which is considered a primary requirement for NEMO-mediated immune signaling, occurred normally in response to Toll-like receptor stimulation, yet ERK phosphorylation and NF-κB p65 nuclear translocation were severely impaired. This selective loss of function highlights the immunological importance of NEMO-regulated pathways beyond IκBα degradation, and offers a biochemical explanation for rare immune deficiencies in man.
Original language | American English |
---|---|
Pages (from-to) | 3046-3051 |
Number of pages | 6 |
Journal | Proceedings of the National Academy of Sciences of the United States of America |
Volume | 107 |
Issue number | 7 |
DOIs | |
State | Published - 16 Feb 2010 |
Externally published | Yes |
Keywords
- Mutagenesis
- N-ethyl-nitrosourea
- Nuclear factor-κB essential modulator
- Toll-like receptor
- p65