A new advanced backcross tomato population enables high resolution leaf QTL mapping and gene identification

Daniel Fulop, Aashish Ranjan, Itai Ofner, Michael F. Covington, Daniel H. Chitwood, Donelly West, Yasunori Ichihashi, Lauren Headland, Daniel Zamir, Julin N. Maloof, Neelima R. Sinha*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

33 Scopus citations

Abstract

Quantitative Trait Loci (QTL) mapping is a powerful technique for dissecting the genetic basis of traits and species differences. Established tomato mapping populations between domesticated tomato (Solanum lycopersicum) and its more distant interfertile relatives typically follow a near isogenic line (NIL) design, such as the S. pennellii Introgression Line (IL) population, with a single wild introgression per line in an otherwise domesticated genetic background. Here, we report on a new advanced backcross QTL mapping resource for tomato, derived from a cross between the M82 tomato cultivar and S. pennellii. This so-called Backcrossed Inbred Line (BIL) population is comprised of a mix of BC2 and BC3 lines, with domesticated tomato as the recurrent parent. The BIL population is complementary to the existing S. pennellii IL population, with which it shares parents. Using the BILs, we mapped traits for leaf complexity, leaflet shape, and flowering time. We demonstrate the utility of the BILs for fine-mapping QTL, particularly QTL initially mapped in the ILs, by fine-mapping several QTL to single or few candidate genes. Moreover, we confirm the value of a backcrossed population with multiple introgressions per line, such as the BILs, for epistatic QTL mapping. Our work was further enabled by the development of our own statistical inference and visualization tools, namely a heterogeneous hidden Markov model for genotyping the lines, and by using state-of-the-art sparse regression techniques for QTL mapping.

Original languageEnglish
Pages (from-to)3169-3184
Number of pages16
JournalG3: Genes, Genomes, Genetics
Volume6
Issue number10
DOIs
StatePublished - 2016

Bibliographical note

Publisher Copyright:
© 2016 Fulop et al.

Keywords

  • Epistatic QTL
  • Fine-mapping QTL
  • Heterogeneous Hidden Markov Model
  • Regularized regression
  • Variable selection

Fingerprint

Dive into the research topics of 'A new advanced backcross tomato population enables high resolution leaf QTL mapping and gene identification'. Together they form a unique fingerprint.

Cite this