A new analysis of differential privacy’s generalization guarantees

Christopher Jung, Katrina Ligett, Seth Neel, Aaron Roth, Saeed Sharifi-Malvajerdi, Moshe Shenfeld

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

15 Scopus citations

Abstract

We give a new proof of the “transfer theorem” underlying adaptive data analysis: that any mechanism for answering adaptively chosen statistical queries that is differentially private and sample-accurate is also accurate out-of-sample. Our new proof is elementary and gives structural insights that we expect will be useful elsewhere. We show: 1) that differential privacy ensures that the expectation of any query on the conditional distribution on datasets induced by the transcript of the interaction is close to its expectation on the data distribution, and 2) sample accuracy on its own ensures that any query answer produced by the mechanism is close to the expectation of the query on the conditional distribution. This second claim follows from a thought experiment in which we imagine that the dataset is resampled from the conditional distribution after the mechanism has committed to its answers. The transfer theorem then follows by summing these two bounds, and in particular, avoids the “monitor argument” used to derive high probability bounds in prior work. An upshot of our new proof technique is that the concrete bounds we obtain are substantially better than the best previously known bounds, even though the improvements are in the constants, rather than the asymptotics (which are known to be tight). As we show, our new bounds outperform the naive “sample-splitting” baseline at dramatically smaller dataset sizes compared to the previous state of the art, bringing techniques from this literature closer to practicality.

Original languageEnglish
Title of host publication11th Innovations in Theoretical Computer Science Conference, ITCS 2020
EditorsThomas Vidick
PublisherSchloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
ISBN (Electronic)9783959771344
DOIs
StatePublished - Jan 2020
Event11th Innovations in Theoretical Computer Science Conference, ITCS 2020 - Seattle, United States
Duration: 12 Jan 202014 Jan 2020

Publication series

NameLeibniz International Proceedings in Informatics, LIPIcs
Volume151
ISSN (Print)1868-8969

Conference

Conference11th Innovations in Theoretical Computer Science Conference, ITCS 2020
Country/TerritoryUnited States
CitySeattle
Period12/01/2014/01/20

Bibliographical note

Publisher Copyright:
© Christopher Jung, Katrina Ligett, Seth Neel, Aaron Roth, Saeed Sharifi-Malvajerdi, and Moshe Shenfeld.

Keywords

  • Adaptive data analysis
  • Differential privacy
  • Transfer theorem

Fingerprint

Dive into the research topics of 'A new analysis of differential privacy’s generalization guarantees'. Together they form a unique fingerprint.

Cite this