TY - GEN
T1 - A presentation of quantum logic based on an and then connective
AU - Lehmann, Daniel
PY - 2007
Y1 - 2007
N2 - When a physicist performs a quantic measurement, new information about the system at hand is gathered. This presentation studies the logical properties of how this new information is combined with previous information. It presents Quantum Logic as a propositional logic under two connectives: negation and the and then operation that combines old and new information. The and then connective is neither commutative nor associative. Many properties of this logic are exhibited, and some small elegant subset is shown to imply all the properties considered. No independence or completeness result is claimed. Classical physical systems are exactly characterized by the commutativity, the associativity, or the monotonicity of the and then connective. Entailment is defined in this logic and can be proved to be a partial order. In orthomodular lattices, the operation proposed by Finch in (Finch 1969) satisfies all the properties studied in this paper. All properties satisfied by Finch's operation in modular lattices are valid in Quantum Logic. It is not known whether all properties of Quantum Logic are satisfied by Finch's operation in modular lattices. Non-commutative, non-associative algebraic structures generalizing Boolean algebras are defined, ideals are characterized and a homomorphism theorem is given1.
AB - When a physicist performs a quantic measurement, new information about the system at hand is gathered. This presentation studies the logical properties of how this new information is combined with previous information. It presents Quantum Logic as a propositional logic under two connectives: negation and the and then operation that combines old and new information. The and then connective is neither commutative nor associative. Many properties of this logic are exhibited, and some small elegant subset is shown to imply all the properties considered. No independence or completeness result is claimed. Classical physical systems are exactly characterized by the commutativity, the associativity, or the monotonicity of the and then connective. Entailment is defined in this logic and can be proved to be a partial order. In orthomodular lattices, the operation proposed by Finch in (Finch 1969) satisfies all the properties studied in this paper. All properties satisfied by Finch's operation in modular lattices are valid in Quantum Logic. It is not known whether all properties of Quantum Logic are satisfied by Finch's operation in modular lattices. Non-commutative, non-associative algebraic structures generalizing Boolean algebras are defined, ideals are characterized and a homomorphism theorem is given1.
UR - http://www.scopus.com/inward/record.url?scp=37349080910&partnerID=8YFLogxK
M3 - ???researchoutput.researchoutputtypes.contributiontobookanthology.conference???
AN - SCOPUS:37349080910
SN - 9781577353171
T3 - AAAI Spring Symposium - Technical Report
SP - 24
EP - 30
BT - Quantum Interaction - Papers from the 2007 AAAI Spring Symposium, Technical Report
T2 - 2007 AAAI Spring Symposium
Y2 - 26 March 2007 through 28 March 2007
ER -