A reversible mutation in a genomic hotspot saves bacterial swarms from extinction

Idan Hefetz, Ofir Israeli, Gal Bilinsky, Inbar Plaschkes, Einat Hazkani-Covo, Zvi Hayouka, Adam Lampert*, Yael Helman*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

Microbial adaptation to changing environmental conditions is frequently mediated by hypermutable sequences. Here we demonstrate that such a hypermutable hotspot within a gene encoding a flagellar unit of Paenibacillus glucanolyticus generated spontaneous non-swarming mutants with increased stress resistance. These mutants, which survived conditions that eliminated wild-type cultures, could be carried by their swarming siblings when the colony spread, consequently increasing their numbers at the spreading edge. Of interest, the hypermutable nature of the aforementioned sequence enabled the non-swarming mutants to serve as “seeds” for a new generation of wild-type cells through reversion of the mutation. Using a mathematical model, we examined the survival dynamics of P. glucanolyticus colonies under fluctuating environments. Our experimental and theoretical results suggest that the non-swarming, stress-resistant mutants can save the colony from extinction. Notably, we identified this hypermutable sequence in flagellar genes of additional Paenibacillus species, suggesting that this phenomenon could be wide-spread and ecologically important.

Original languageAmerican English
Article number106043
JournaliScience
Volume26
Issue number2
DOIs
StatePublished - 17 Feb 2023

Bibliographical note

Publisher Copyright:
© 2023 The Author(s)

Keywords

  • Biological sciences
  • Genetics
  • Mathematical biosciences
  • Microbiology

Fingerprint

Dive into the research topics of 'A reversible mutation in a genomic hotspot saves bacterial swarms from extinction'. Together they form a unique fingerprint.

Cite this