TY - JOUR
T1 - A scalable and tunable platform for functional interrogation of peptide hormones in fish
AU - Moses, Eitan
AU - Franek, Roman
AU - Harel, Itamar
N1 - Publisher Copyright:
© Moses et al.
PY - 2023/10/24
Y1 - 2023/10/24
N2 - Pituitary hormones play a central role in shaping vertebrate life history events, including growth, reproduction, metabolism, and aging. The regulation of these traits often requires precise control of hormone levels across diverse timescales. However, fine tuning circulating hormones in-vivo has traditionally been experimentally challenging. Here, using the naturally short-lived turquoise killifish (N. furzeri), we describe a high-throughput platform that combines loss-and gain-of-function of peptide hormones. Mutation of three primary pituitary hormones, growth hormone (gh1), follicle stimulating hormone (fshb), and thyroid stimulating hormone (tshb), alters somatic growth and reproduction. Thus, suggesting that while the killifish undergoes extremely rapid growth and maturity, it still relies on vertebrate-conserved genetic networks. As the next stage, we developed a gain-of-function vector system in which a hormone is tagged using a self-cleavable fluorescent reporter, and ectopically expressed in-vivo through intramuscular electroporation. Following a single electroporation, phenotypes, such as reproduction, are stably rescued for several months. Notably, we demonstrate the versatility of this approach by using multiplexing, dose-dependent, and doxycycline-inducible systems to achieve tunable and reversible expression. In summary, this method is relatively high-throughput, and facilitates large-scale interrogation of life-history strategies in fish. Ultimately, this approach could be adapted for modifying aquaculture species and exploring pro-longevity interventions.
AB - Pituitary hormones play a central role in shaping vertebrate life history events, including growth, reproduction, metabolism, and aging. The regulation of these traits often requires precise control of hormone levels across diverse timescales. However, fine tuning circulating hormones in-vivo has traditionally been experimentally challenging. Here, using the naturally short-lived turquoise killifish (N. furzeri), we describe a high-throughput platform that combines loss-and gain-of-function of peptide hormones. Mutation of three primary pituitary hormones, growth hormone (gh1), follicle stimulating hormone (fshb), and thyroid stimulating hormone (tshb), alters somatic growth and reproduction. Thus, suggesting that while the killifish undergoes extremely rapid growth and maturity, it still relies on vertebrate-conserved genetic networks. As the next stage, we developed a gain-of-function vector system in which a hormone is tagged using a self-cleavable fluorescent reporter, and ectopically expressed in-vivo through intramuscular electroporation. Following a single electroporation, phenotypes, such as reproduction, are stably rescued for several months. Notably, we demonstrate the versatility of this approach by using multiplexing, dose-dependent, and doxycycline-inducible systems to achieve tunable and reversible expression. In summary, this method is relatively high-throughput, and facilitates large-scale interrogation of life-history strategies in fish. Ultimately, this approach could be adapted for modifying aquaculture species and exploring pro-longevity interventions.
UR - http://www.scopus.com/inward/record.url?scp=85175270856&partnerID=8YFLogxK
U2 - 10.7554/eLife.85960
DO - 10.7554/eLife.85960
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 37872843
AN - SCOPUS:85175270856
SN - 2050-084X
VL - 12
JO - eLife
JF - eLife
M1 - e85960
ER -