Abstract
The attentional blink (AB) effect is the reduced probability of reporting a second target (T2) that appears shortly after a first one (T1) within a rapidly presented sequence of distractors. The AB effect has been shown to be reduced following intensive mental training in the form of mindfulness meditation, with a corresponding reduction in T1-evoked P3b brain potentials. However, the mechanisms underlying these effects remain unknown. We propose a dynamical-systems model of the AB, in which attentional load is described as the response of a dynamical system to incoming impulse signals. Non-task related mental activity is represented by additive noise modulated by meditation. The model provides a parsimonious computational framework relating behavioral performance, evoked brain potentials and training through the concept of reduced mental noise.
Original language | English |
---|---|
Article number | 8 |
Journal | PLoS Computational Biology |
Volume | 18 |
Issue number | 8 |
DOIs | |
State | Published - Aug 2022 |
Bibliographical note
Publisher Copyright:Copyright: © 2022 Amir et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.