A synthetic homing endonuclease-based gene drive system in the human malaria mosquito

Nikolai Windbichler, Miriam Menichelli, Philippos Aris Papathanos, Summer B. Thyme, Hui Li, Umut Y. Ulge, Blake T. Hovde, David Baker, Raymond J. Monnat, Austin Burt, Andrea Crisanti*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

265 Scopus citations


Genetic methods of manipulating or eradicating disease vector populations have long been discussed as an attractive alternative to existing control measures because of their potential advantages in terms of effectiveness and species specificity. The development of genetically engineered malaria-resistant mosquitoes has shown, as a proof of principle, the possibility of targeting the mosquitoĝ€™s ability to serve as a disease vector. The translation of these achievements into control measures requires an effective technology to spread a genetic modification from laboratory mosquitoes to field populations. We have suggested previously that homing endonuclease genes (HEGs), a class of simple selfish genetic elements, could be exploited for this purpose. Here we demonstrate that a synthetic genetic element, consisting of mosquito regulatory regions and the homing endonuclease gene I-SceI, can substantially increase its transmission to the progeny in transgenic mosquitoes of the human malaria vector Anopheles gambiae. We show that the I-SceI element is able to invade receptive mosquito cage populations rapidly, validating mathematical models for the transmission dynamics of HEGs. Molecular analyses confirm that expression of I-SceI in the male germline induces high rates of site-specific chromosomal cleavage and gene conversion, which results in the gain of the I-SceI gene, and underlies the observed genetic drive. These findings demonstrate a new mechanism by which genetic control measures can be implemented. Our results also show in principle how sequence-specific genetic drive elements like HEGs could be used to take the step from the genetic engineering of individuals to the genetic engineering of populations.

Original languageAmerican English
Pages (from-to)212-215
Number of pages4
Issue number7346
StatePublished - 12 May 2011
Externally publishedYes

Bibliographical note

Funding Information:
Acknowledgements We thank M. Ashburner, S. Russell, D. Huen and S. Chan for comments, assistance and for plasmids. We thank M. P. Calos for providing the pET11phiC31polyA plasmid. We thank M. J. Fraser Jr for providing the pBSII-IFP2-orf plasmid. We thank J. Meredith and P. Eggleston for providing the docking strain. We thank A. Hall, T. Nolan, K. Magnusson, D. Rogers and S. Fuchs for assistance. We thank S. Arshiya Quadri and M. Szeto for experimental support and the members of the laboratories of D. Baker, R. Monnat, A. Scharenberg and B. Stoddard for their collective support of HEG engineering. A. F. M. Hackmann provided graphics support. Funded by a grant from the Foundation for the National Institutes of Health through the Vector-Based Control of Transmission: Discovery Research (VCTR) program of the Grand Challenges in Global Health initiative and by NIH RL1 awards GM084433 to D.B. and CA133831 to R.J.M.


Dive into the research topics of 'A synthetic homing endonuclease-based gene drive system in the human malaria mosquito'. Together they form a unique fingerprint.

Cite this