A theory of learning with constrained weight-distribution

Weishun Zhong, Ben Sorscher, Daniel D. Lee, Haim Sompolinsky

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

A central question in computational neuroscience is how structure determines function in neural networks. Recent large-scale connectomic studies have started to provide a wealth of structural information such as the distribution of excitatory/inhibitory cell and synapse types as well as the distribution of synaptic weights in the brains of different species. The emerging high-quality large structural datasets raise the question of what general functional principles can be gleaned from them. Motivated by this question, we developed a statistical mechanical theory of learning in neural networks that incorporates structural information as constraints. We derived an analytical solution for the memory capacity of the perceptron, a basic feedforward model of supervised learning, with constraint on the distribution of its weights. Interestingly, the theory predicts that the reduction in capacity due to the constrained weight-distribution is related to the Wasserstein distance between the cumulative distribution function of the constrained weights and that of the standard normal distribution. To test the theoretical predictions, we use optimal transport theory and information geometry to develop an SGD-based algorithm to find weights that simultaneously learn the input-output task and satisfy the distribution constraint. We show that training in our algorithm can be interpreted as geodesic flows in the Wasserstein space of probability distributions. We further developed a statistical mechanical theory for teacher-student perceptron rule learning and ask for the best way for the student to incorporate prior knowledge of the rule (i.e., the teacher). Our theory shows that it is beneficial for the learner to adopt different prior weight distributions during learning, and shows that distribution-constrained learning outperforms unconstrained and sign-constrained learning. Our theory and algorithm provide novel strategies for incorporating prior knowledge about weights into learning, and reveal a powerful connection between structure and function in neural networks.

Original languageEnglish
Title of host publicationAdvances in Neural Information Processing Systems 35 - 36th Conference on Neural Information Processing Systems, NeurIPS 2022
EditorsS. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, A. Oh
PublisherNeural information processing systems foundation
ISBN (Electronic)9781713871088
StatePublished - 2022
Event36th Conference on Neural Information Processing Systems, NeurIPS 2022 - New Orleans, United States
Duration: 28 Nov 20229 Dec 2022

Publication series

NameAdvances in Neural Information Processing Systems
Volume35
ISSN (Print)1049-5258

Conference

Conference36th Conference on Neural Information Processing Systems, NeurIPS 2022
Country/TerritoryUnited States
CityNew Orleans
Period28/11/229/12/22

Bibliographical note

Publisher Copyright:
© 2022 Neural information processing systems foundation. All rights reserved.

Fingerprint

Dive into the research topics of 'A theory of learning with constrained weight-distribution'. Together they form a unique fingerprint.

Cite this