A tidal disruption event coincident with a high-energy neutrino

Robert Stein*, Sjoert van Velzen*, Marek Kowalski*, Anna Franckowiak, Suvi Gezari, James C.A. Miller-Jones, Sara Frederick, Itai Sfaradi, Michael F. Bietenholz, Assaf Horesh, Rob Fender, Simone Garrappa, Tomás Ahumada, Igor Andreoni, Justin Belicki, Eric C. Bellm, Markus Böttcher, Valery Brinnel, Rick Burruss, S. Bradley CenkoMichael W. Coughlin, Virginia Cunningham, Andrew Drake, Glennys R. Farrar, Michael Feeney, Ryan J. Foley, Avishay Gal-Yam, V. Zach Golkhou, Ariel Goobar, Matthew J. Graham, Erica Hammerstein, George Helou, Tiara Hung, Mansi M. Kasliwal, Charles D. Kilpatrick, Albert K.H. Kong, Thomas Kupfer, Russ R. Laher, Ashish A. Mahabal, Frank J. Masci, Jannis Necker, Jakob Nordin, Daniel A. Perley, Mickael Rigault, Simeon Reusch, Hector Rodriguez, César Rojas-Bravo, Ben Rusholme, David L. Shupe, Leo P. Singer, Jesper Sollerman, Maayane T. Soumagnac, Daniel Stern, Kirsty Taggart, Jakob van Santen, Charlotte Ward, Patrick Woudt, Yuhan Yao

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

143 Scopus citations

Abstract

Cosmic neutrinos provide a unique window into the otherwise hidden mechanism of particle acceleration in astrophysical objects. The IceCube Collaboration recently reported the likely association of one high-energy neutrino with a flare from the relativistic jet of an active galaxy pointed towards the Earth. However a combined analysis of many similar active galaxies revealed no excess from the broader population, leaving the vast majority of the cosmic neutrino flux unexplained. Here we present the likely association of a radio-emitting tidal disruption event, AT2019dsg, with a second high-energy neutrino. AT2019dsg was identified as part of our systematic search for optical counterparts to high-energy neutrinos with the Zwicky Transient Facility. The probability of finding any coincident radio-emitting tidal disruption event by chance is 0.5%, while the probability of finding one as bright in bolometric energy flux as AT2019dsg is 0.2%. Our electromagnetic observations can be explained through a multizone model, with radio analysis revealing a central engine, embedded in a UV photosphere, that powers an extended synchrotron-emitting outflow. This provides an ideal site for petaelectronvolt neutrino production. Assuming that the association is genuine, our observations suggest that tidal disruption events with mildly relativistic outflows contribute to the cosmic neutrino flux.

Original languageAmerican English
Pages (from-to)510-518
Number of pages9
JournalNature Astronomy
Volume5
Issue number5
DOIs
StatePublished - May 2021

Bibliographical note

Publisher Copyright:
© 2021, The Author(s), under exclusive licence to Springer Nature Limited.

Fingerprint

Dive into the research topics of 'A tidal disruption event coincident with a high-energy neutrino'. Together they form a unique fingerprint.

Cite this