Abstract
The genetic dissection of spinal circuits is an essential new means for understanding the neural basis of mammalian behavior. Molecular targeting of specific neuronal populations, a key instrument in the genetic dissection of neuronal circuits in the mouse model, is a complex and time-demanding process. Here we present a circuit-deciphering 'tool box' for fast, reliable and cheap genetic targeting of neuronal circuits in the developing spinal cord of the chick.We demonstrate targeting of motoneurons and spinal interneurons, mapping of axonal trajectories and synaptic targeting in both single and populations of spinal interneurons, and viral vector-mediated labeling of pre-motoneurons. We also demonstrate fluorescent imaging of the activity pattern of defined spinal neurons during rhythmicmotor behavior, and assess the role of channel rhodopsin-targeted population of interneurons in rhythmic behavior using specific photoactivation.
Original language | American English |
---|---|
Article number | e148 |
Journal | Nucleic Acids Research |
Volume | 42 |
Issue number | 19 |
DOIs | |
State | Published - 29 Oct 2014 |
Bibliographical note
Funding Information:The authors thank Atrur Kania, Michael O''Donovan and Marysia Placzek for their helpful comments on the manuscript.We also express thanks to Omer Gal and Hiba Shihadeh for the technical assistance they provided. Legacy Heritage Biomedical Science Partnership [1930/08 to A.K and A.L-T]; and Israel Science Foundation [631/13 to A.K; 1591/08 and 491/12 to A.L-T]. Funding for open access charge: Legacy Heritage Biomedical Science Partnership [1930/08 to A.K and A.L-T]; and Israel Science Foundation [631/13 to A.K; 1591/08 and 491/12 to A.L-T]. Conflict of interest statement. None declared.
Publisher Copyright:
© The Author(s) 2014.