TY - JOUR
T1 - A trypanosomal CCHC-type zinc finger protein which binds the conserved universal sequence of kinetoplast DNA minicircles
T2 - Isolation and analysis of the complete cDNA from Crithidia fasciculata
AU - Abeliovich, Hagai
AU - Tzfati, Yehuda
AU - Shlomai, Joseph
PY - 1993/12
Y1 - 1993/12
N2 - Replication of the kinetoplast DNA minicircle light strand initiates at a highly conserved 12-nucleotide sequence, termed the universal minicircle sequence. A Crithidia fasciculata single-stranded DNA-binding protein interacts specifically with the guanine-rich heavy strand of this origin-associated sequence (Y. Tzfati, H. Abeliovich, I. Kapeller, and J. Shlomai, Proc. Natl. Acad. Sci. USA 89:6891-6895, 1992). Using the universal minicircle sequence heavy-strand probe to screen a C. fasciculata cDNA expression library, we have isolated two overlapping cDNA clones encoding the trypanosomatid universal minicircle sequence-binding protein. The complete cDNA sequence defines an open reading frame encoding a 116-amino-acid polypeptide chain consisting of five repetitions of a CCHC zinc finger motif. A significant similarity is found between this universal minicircle sequence-binding protein and two other single-stranded DNA-binding proteins identified in humans and in Leishmania major. All three proteins bind specifically to single-stranded guanine-rich DNA ligands. Partial amino acid sequence of the endogenous protein, purified to homogeneity from C. fasciculata, was identical to that deduced from the cDNA nucleotide sequence. DNA-binding characteristics of the cDNA-encoded fusion protein expressed in bacteria were identical to those of the endogenous C. fasciculata protein. Hybridization analyses reveal that the gene encoding the minicircle origin-binding protein is nuclear and may occur in the C. fasciculata chromosome as a cluster of several structural genes.
AB - Replication of the kinetoplast DNA minicircle light strand initiates at a highly conserved 12-nucleotide sequence, termed the universal minicircle sequence. A Crithidia fasciculata single-stranded DNA-binding protein interacts specifically with the guanine-rich heavy strand of this origin-associated sequence (Y. Tzfati, H. Abeliovich, I. Kapeller, and J. Shlomai, Proc. Natl. Acad. Sci. USA 89:6891-6895, 1992). Using the universal minicircle sequence heavy-strand probe to screen a C. fasciculata cDNA expression library, we have isolated two overlapping cDNA clones encoding the trypanosomatid universal minicircle sequence-binding protein. The complete cDNA sequence defines an open reading frame encoding a 116-amino-acid polypeptide chain consisting of five repetitions of a CCHC zinc finger motif. A significant similarity is found between this universal minicircle sequence-binding protein and two other single-stranded DNA-binding proteins identified in humans and in Leishmania major. All three proteins bind specifically to single-stranded guanine-rich DNA ligands. Partial amino acid sequence of the endogenous protein, purified to homogeneity from C. fasciculata, was identical to that deduced from the cDNA nucleotide sequence. DNA-binding characteristics of the cDNA-encoded fusion protein expressed in bacteria were identical to those of the endogenous C. fasciculata protein. Hybridization analyses reveal that the gene encoding the minicircle origin-binding protein is nuclear and may occur in the C. fasciculata chromosome as a cluster of several structural genes.
UR - http://www.scopus.com/inward/record.url?scp=0027422980&partnerID=8YFLogxK
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 8246992
AN - SCOPUS:0027422980
SN - 0270-7306
VL - 13
SP - 7766
EP - 7773
JO - Molecular and Cellular Biology
JF - Molecular and Cellular Biology
IS - 12
ER -