Abstract
Life expectancy has increased significantly over the last century, implying a substantial lengthening of the investment horizon. We consider the portfolio choice problem of long-run investors in a setting with three assets: stocks, risky bonds, and a risk-free asset. We show that in the benchmark continuous-time framework there is a unique stock–bond mix that is optimal for all investors with non-decreasing preferences, including Prospect Theory investors, and investors with various aspiration levels. In discrete time, there is a set of efficient stock–bond mixtures. As the investment horizon increases, this set shrinks quickly and converges to the unique continuous-time optimal solution.
Original language | English |
---|---|
Journal | Annals of Operations Research |
DOIs | |
State | Accepted/In press - 2023 |
Bibliographical note
Publisher Copyright:© 2023, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Keywords
- First-degree Stochastic Dominance (FSD)
- Investment horizon
- Lognormal distribution
- Prospect theory
- Stocks versus bonds