TY - JOUR
T1 - A universal approach to modeling visual word recognition and reading
T2 - Not only possible, but also inevitable
AU - Frost, Ram
PY - 2012/10
Y1 - 2012/10
N2 - I have argued that orthographic processing cannot be understood and modeled without considering the manner in which orthographic structure represents phonological, semantic, and morphological information in a given writing system. A reading theory, therefore, must be a theory of the interaction of the reader with his/her linguistic environment. This outlines a novel approach to studying and modeling visual word recognition, an approach that focuses on the common cognitive principles involved in processing printed words across different writing systems. These claims were challenged by several commentaries that contested the merits of my general theoretical agenda, the relevance of the evolution of writing systems, and the plausibility of finding commonalities in reading across orthographies. Other commentaries extended the scope of the debate by bringing into the discussion additional perspectives. My response addresses all these issues. By considering the constraints of neurobiology on modeling reading, developmental data, and a large scope of cross-linguistic evidence, I argue that front-end implementations of orthographic processing that do not stem from a comprehensive theory of the complex information conveyed by writing systems do not present a viable approach for understanding reading. The common principles by which writing systems have evolved to represent orthographic, phonological, and semantic information in a language reveal the critical distributional characteristics of orthographic structure that govern reading behavior. Models of reading should thus be learning models, primarily constrained by cross-linguistic developmental evidence that describes how the statistical properties of writing systems shape the characteristics of orthographic processing. When this approach is adopted, a universal model of reading is possible.
AB - I have argued that orthographic processing cannot be understood and modeled without considering the manner in which orthographic structure represents phonological, semantic, and morphological information in a given writing system. A reading theory, therefore, must be a theory of the interaction of the reader with his/her linguistic environment. This outlines a novel approach to studying and modeling visual word recognition, an approach that focuses on the common cognitive principles involved in processing printed words across different writing systems. These claims were challenged by several commentaries that contested the merits of my general theoretical agenda, the relevance of the evolution of writing systems, and the plausibility of finding commonalities in reading across orthographies. Other commentaries extended the scope of the debate by bringing into the discussion additional perspectives. My response addresses all these issues. By considering the constraints of neurobiology on modeling reading, developmental data, and a large scope of cross-linguistic evidence, I argue that front-end implementations of orthographic processing that do not stem from a comprehensive theory of the complex information conveyed by writing systems do not present a viable approach for understanding reading. The common principles by which writing systems have evolved to represent orthographic, phonological, and semantic information in a language reveal the critical distributional characteristics of orthographic structure that govern reading behavior. Models of reading should thus be learning models, primarily constrained by cross-linguistic developmental evidence that describes how the statistical properties of writing systems shape the characteristics of orthographic processing. When this approach is adopted, a universal model of reading is possible.
UR - http://www.scopus.com/inward/record.url?scp=84869486570&partnerID=8YFLogxK
U2 - 10.1017/S0140525X12000635
DO - 10.1017/S0140525X12000635
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.systematicreview???
C2 - 23251930
AN - SCOPUS:84869486570
SN - 0140-525X
VL - 35
SP - 310
EP - 329
JO - Behavioral and Brain Sciences
JF - Behavioral and Brain Sciences
IS - 5
ER -