TY - JOUR
T1 - A Xenopus nonmuscle myosin heavy chain isoform is phosphorylated by cyclin-p34(cdc2) kinase during meiosis
AU - Kelley, C. A.
AU - Oberman, F.
AU - Yisraeli, J. K.
AU - Adelstein, R. S.
PY - 1995
Y1 - 1995
N2 - There are two vertebrate nonmuscle myosin heavy chain (MHC) genes that encode two separate isoforms of the heavy chain, MHC-A and MHC-B. Recent work has identified additional, alternatively spliced isoforms of MHC-B cDNA with inserted sequences of 30 nucleotides (chicken and human) or 48 nucleotides (Xenopus) at a site corresponding to the ATP binding region in the MHC protein (Takahashi, M., Kawamoto, S., and Adelstein, R. S. (1992) J. Biol. Chem. 267, 17864-17871) and Bhatia-Dey, N., Adelstein, R. S., and Dawid, I. B. (1993) Proc. Natl. Acad. Sci. U. S. A. 90, 2856-2859). The deduced amino acid sequence of these inserts contains a consensus sequence for phosphorylation by cyclin-p34(cdc2) (cdc2) kinase. In cultured Xenopus XTC cells, we have identified two inserted MHC-B isoforms and a non-inserted MHC- A isoform by immunoblotting of cell extracts. When myosin was immunoprecipitated from XTC cells and phosphorylated in vitro with cdc2 kinase, the kinase catalyzed the phosphorylation of both inserted MHC-B isoforms but not MHC-A. Isoelectric focusing of tryptic peptides generated from MHC-B phosphorylated with cdc2 kinase revealed one major phosphopeptide that was purified by reverse-phase high performance liquid chromatography and sequenced. The phosphorylated residue was Ser-214, the cdc2 kinase consensus site within the insert near the ATP binding region. The same site was phosphorylated in intact XTC cells during log phase of growth and in cell- free lysates of Xenopus eggs stabilized in second meiotic metaphase but not interphase. Moreover, Ser-214 phosphorylation was detected during maturation of Xenopus oocytes when the cdc2 kinase-containing maturation-promoting factor was activated, but not in G2 interphase-arrested oocytes. These results demonstrate that MHC-B phosphorylation is tightly regulated by cdc2 kinase during meiotic cell cycles. Furthermore, MHC-A and MHC-B isoforms are differentially phosphorylated at these stages, suggesting that they may serve different functions in these cells.
AB - There are two vertebrate nonmuscle myosin heavy chain (MHC) genes that encode two separate isoforms of the heavy chain, MHC-A and MHC-B. Recent work has identified additional, alternatively spliced isoforms of MHC-B cDNA with inserted sequences of 30 nucleotides (chicken and human) or 48 nucleotides (Xenopus) at a site corresponding to the ATP binding region in the MHC protein (Takahashi, M., Kawamoto, S., and Adelstein, R. S. (1992) J. Biol. Chem. 267, 17864-17871) and Bhatia-Dey, N., Adelstein, R. S., and Dawid, I. B. (1993) Proc. Natl. Acad. Sci. U. S. A. 90, 2856-2859). The deduced amino acid sequence of these inserts contains a consensus sequence for phosphorylation by cyclin-p34(cdc2) (cdc2) kinase. In cultured Xenopus XTC cells, we have identified two inserted MHC-B isoforms and a non-inserted MHC- A isoform by immunoblotting of cell extracts. When myosin was immunoprecipitated from XTC cells and phosphorylated in vitro with cdc2 kinase, the kinase catalyzed the phosphorylation of both inserted MHC-B isoforms but not MHC-A. Isoelectric focusing of tryptic peptides generated from MHC-B phosphorylated with cdc2 kinase revealed one major phosphopeptide that was purified by reverse-phase high performance liquid chromatography and sequenced. The phosphorylated residue was Ser-214, the cdc2 kinase consensus site within the insert near the ATP binding region. The same site was phosphorylated in intact XTC cells during log phase of growth and in cell- free lysates of Xenopus eggs stabilized in second meiotic metaphase but not interphase. Moreover, Ser-214 phosphorylation was detected during maturation of Xenopus oocytes when the cdc2 kinase-containing maturation-promoting factor was activated, but not in G2 interphase-arrested oocytes. These results demonstrate that MHC-B phosphorylation is tightly regulated by cdc2 kinase during meiotic cell cycles. Furthermore, MHC-A and MHC-B isoforms are differentially phosphorylated at these stages, suggesting that they may serve different functions in these cells.
UR - http://www.scopus.com/inward/record.url?scp=0028893935&partnerID=8YFLogxK
U2 - 10.1074/jbc.270.3.1395
DO - 10.1074/jbc.270.3.1395
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 7836406
AN - SCOPUS:0028893935
SN - 0021-9258
VL - 270
SP - 1395
EP - 1401
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 3
ER -