Abscisic acid catabolism enhances dormancy release of grapevine buds

Chuanlin Zheng, Atiako Kwame Acheampong, Zhaowan Shi, Amichay Mugzech, Tamar Halaly-Basha, Felix Shaya, Yufei Sun, Violeta Colova, Assaf Mosquna, Ron Ophir, David W. Galbraith, Etti Or*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

47 Scopus citations

Abstract

The molecular mechanism regulating dormancy release in grapevine buds is as yet unclear. It was formerly proposed that dormancy is maintained by abscisic acid (ABA)-mediated repression of bud–meristem activity and that removal of this repression triggers dormancy release. It was also proposed that such removal of repression may be achieved via natural or artificial up-regulation of VvA8H-CYP707A4, which encodes ABA 8′-hydroxylase, and is the most highly expressed paralog in grapevine buds. The current study further examines these assumptions, and its experiments reveal that (a) hypoxia and ethylene, stimuli of bud dormancy release, enhance expression of VvA8H-CYP707A4 within grape buds, (b) the VvA8H-CYP707A4 protein accumulates during the natural transition to the dormancy release stage, and (c) transgenic vines overexpressing VvA8H-CYP707A4 exhibit increased ABA catabolism and significant enhancement of bud break in controlled and natural environments and longer basal summer laterals. The results suggest that VvA8H-CYP707A4 functions as an ABA degrading enzyme, and are consistent with a model in which the VvA8H-CYP707A4 level in the bud is up-regulated by natural and artificial bud break stimuli, which leads to increased ABA degradation capacity, removal of endogenous ABA-mediated repression, and enhanced regrowth. Interestingly, it also hints at sharing of regulatory steps between latent and lateral bud outgrowth.

Original languageEnglish
Pages (from-to)2490-2503
Number of pages14
JournalPlant, Cell and Environment
Volume41
Issue number10
DOIs
StatePublished - Oct 2018

Bibliographical note

Publisher Copyright:
© 2018 John Wiley & Sons Ltd

Keywords

  • ABA 8′-hydroxylase (ABA8'OH)

Fingerprint

Dive into the research topics of 'Abscisic acid catabolism enhances dormancy release of grapevine buds'. Together they form a unique fingerprint.

Cite this