Abstract
The availability of large idea repositories (e.g., patents) could significantly accelerate innovation and discovery by providing people inspiration from solutions to analogous problems. However, finding useful analogies in these large, messy, real-world repositories remains a persistent challenge for both humans and computers. Previous approaches include costly hand-created databases that do not scale, or machine-learning similarity metrics that struggle to account for structural similarity, which is central to analogy. In this paper1 we explore the viability and value of learning simple structural representations. Our approach combines crowdsourcing and recurrent neural networks to extract purpose and mechanism vector representations from product descriptions. We demonstrate that these learned vectors allow us to find analogies with higher precision and recall than traditional methods. In an ideation experiment, analogies retrieved by our models significantly increased people's likelihood of generating creative ideas.
Original language | English |
---|---|
Title of host publication | Proceedings of the 27th International Joint Conference on Artificial Intelligence, IJCAI 2018 |
Editors | Jerome Lang |
Publisher | International Joint Conferences on Artificial Intelligence |
Pages | 5274-5278 |
Number of pages | 5 |
ISBN (Electronic) | 9780999241127 |
DOIs | |
State | Published - 2018 |
Event | 27th International Joint Conference on Artificial Intelligence, IJCAI 2018 - Stockholm, Sweden Duration: 13 Jul 2018 → 19 Jul 2018 |
Publication series
Name | IJCAI International Joint Conference on Artificial Intelligence |
---|---|
Volume | 2018-July |
ISSN (Print) | 1045-0823 |
Conference
Conference | 27th International Joint Conference on Artificial Intelligence, IJCAI 2018 |
---|---|
Country/Territory | Sweden |
City | Stockholm |
Period | 13/07/18 → 19/07/18 |
Bibliographical note
Publisher Copyright:© 2018 International Joint Conferences on Artificial Intelligence.All right reserved.