Abstract
The ultimate precision limit in estimating the Larmor frequency of N unentangled qubits is well established, and is highly important for magnetometers, gyroscopes, and other types of quantum sensors. However, this limit assumes perfect projective measurements of the quantum registers. This requirement is not practical in many physical systems, such as NMR spectroscopy, where a weakly interacting external probe is used as a measurement device. Here, we show that in the framework of quantum nano-NMR spectroscopy, in which these limitations are inherent, the ultimate precision limit is still achievable using control and a finely tuned measurement.
Original language | American English |
---|---|
Article number | 83 |
Journal | npj Quantum Information |
Volume | 6 |
Issue number | 1 |
DOIs | |
State | Published - 1 Dec 2020 |
Bibliographical note
Funding Information:A.R. acknowledges the support of ERC grant QRES, project No. 770929, grant agreement No. 667192 (Hyperdiamond), and the ASTERIQS and DiaPol projects. T.G. is supported by the Adams fellowship of the Israeli academy of sciences and humanities.
Publisher Copyright:
© 2020, The Author(s).