Activation of mitogen-activated protein kinases by 5,6-dimethylxanthenone- 4-acetic acid (DMXAA) plays an important role in macrophage stimulation

Jing Sun, Liang Chuan S. Wang, Zvi G. Fridlender, Veena Kapoor, Guanjun Cheng, Lai Ming Ching, Steven M. Albelda*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

14 Scopus citations

Abstract

The small molecule anti-tumor agent, 5,6-dimethylxanthenone-4-acetic acid (DMXAA, now called Vadimezan) is a potent macrophage and dendritic cell activating agent that, in the murine system, results in the release of large amounts of cytokines and chemokines. The mechanisms by which this release is mediated have not been fully elucidated. The mitogen-activated protein kinase (MAPK) pathways play an important role in the regulation of proinflammatory cytokines, such as TNF-α, IL-1β, as well as the responses to extracellular stimuli, such as lipopolysaccharide (LPS). The results of this study demonstrate that DMXAA activates three members of mitogen-activated protein kinase (MAPK) superfamily, namely p38 MAPK, extracellular signal-regulated kinases 1 and 2 (ERK1 and ERK2), and c-Jun N-terminal kinases (JNKs) via a RIP2-independent mechanism in murine macrophages. By using selective inhibitors of MAPKs, this study confirms that both activated p38/MK2 pathways and ERK1/2 MAPK play a significant role in regulation of both TNF-α and IL-6 protein production induced by DMXAA at the post-transcriptional level. Our findings also show that interferon-γ priming can dramatically augment TNF-α protein secretion induced by DMXAA through enhancing activation of multiple MAPK pathways at the post-transcriptional level. This study expands current knowledge on mechanisms of how DMXAA acts as a potent anti-tumor agent in murine system and also provides useful information for further study on the mechanism of action of this potential anti-tumor compound in human macrophages.

Original languageEnglish
Pages (from-to)1175-1185
Number of pages11
JournalBiochemical Pharmacology
Volume82
Issue number9
DOIs
StatePublished - 1 Nov 2011
Externally publishedYes

Bibliographical note

Funding Information:
This work was supported by NCI (National Cancer Institute) grant P01 CA66726 (to S.M.A.).

Keywords

  • DMXAA
  • MAPK
  • Post-transcriptional regulation
  • Proinflammatory cytokines
  • TNF-α

Fingerprint

Dive into the research topics of 'Activation of mitogen-activated protein kinases by 5,6-dimethylxanthenone- 4-acetic acid (DMXAA) plays an important role in macrophage stimulation'. Together they form a unique fingerprint.

Cite this