TY - JOUR
T1 - Activation of molecular oxygen by a dioxygenase pathway by a ruthenium bis-bipyridine compound with a proximal selenium site
AU - Laskavy, Alexander
AU - Shimon, Linda J.W.
AU - Konstantinovski, Leonid
AU - Iron, Mark A.
AU - Neumann, Ronny
PY - 2010/1/20
Y1 - 2010/1/20
N2 - A ruthenium(II) bipyridine complex with proximal phenylselenium tethers, [Ru](H2O)2, reacted intramolecularly with O2 in a protic slightly acidic solvent, 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP), to yield an O-O bond cleaved product, [Ru](O)2, with formation of two Ru-O-Se moieties. This stable compound was isolated, and its structure was determined by X-ray diffraction. The identification of the compound in solution was confirmed by ESI-MS and the 1H NMR with the associated Curie plot that showed that [Ru](O)2 was paramagnetic. The magnetic susceptibility was 2.8 μB by Evan's method suggesting a ground state triplet or biradical. DFT calculations, however, predicted a ground state singlet and an oxidized Se atom. Further it was shown that [Ru](O)2 is a potent oxygen transfer species of both O2-derived atoms to triphenylphosphine and a nucleophilic alkene such as 2,3-dimethyl-2-butene in both HFIP and acetonitrile. UV-vis spectroscopy combined with the measured stoichiometry of PPh3:O2 = ̃2 in a catalytic oxidation of PPh3 suggests a dioxygenase type activation of O 2 with structural identification of the O-O bond cleavage reaction step, formation of [Ru](O)2 as an intermediate, and the proof that [Ru](O)2 is a donor of both oxygen atoms.
AB - A ruthenium(II) bipyridine complex with proximal phenylselenium tethers, [Ru](H2O)2, reacted intramolecularly with O2 in a protic slightly acidic solvent, 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP), to yield an O-O bond cleaved product, [Ru](O)2, with formation of two Ru-O-Se moieties. This stable compound was isolated, and its structure was determined by X-ray diffraction. The identification of the compound in solution was confirmed by ESI-MS and the 1H NMR with the associated Curie plot that showed that [Ru](O)2 was paramagnetic. The magnetic susceptibility was 2.8 μB by Evan's method suggesting a ground state triplet or biradical. DFT calculations, however, predicted a ground state singlet and an oxidized Se atom. Further it was shown that [Ru](O)2 is a potent oxygen transfer species of both O2-derived atoms to triphenylphosphine and a nucleophilic alkene such as 2,3-dimethyl-2-butene in both HFIP and acetonitrile. UV-vis spectroscopy combined with the measured stoichiometry of PPh3:O2 = ̃2 in a catalytic oxidation of PPh3 suggests a dioxygenase type activation of O 2 with structural identification of the O-O bond cleavage reaction step, formation of [Ru](O)2 as an intermediate, and the proof that [Ru](O)2 is a donor of both oxygen atoms.
UR - http://www.scopus.com/inward/record.url?scp=74949126460&partnerID=8YFLogxK
U2 - 10.1021/ja9047027
DO - 10.1021/ja9047027
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 20014850
AN - SCOPUS:74949126460
SN - 0002-7863
VL - 132
SP - 517
EP - 523
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 2
ER -