Abstract
Background/Objective: Environmental exposure to anti-acetylcholinesterases (AChEs) aggravates the risk of Parkinsonism due to currently unclear mechanism(s). We explored the possibility that the brain's capacity to induce a widespread adaptive alternative splicing response to such exposure may be involved. Methods: Following exposure to the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), brain region transcriptome profiles were tested. Results: Changes in transcript profiles, alternative splicing patterns and splicing-related gene categories were identified. Engineered mice over-expressing the protective AChE-R splice variant showed less total changes but more splicing-related ones than hypersensitive AChE-S over-expressors with similarly increased hydrolytic activities. Following MPTP exposure, the substantia nigra and prefrontal cortex (PFC) of both strains showed a nuclear increase in the splicing factor ASF/SF2 protein. Furthermore, intravenous injection with highly purified recombinant human AChE-R changed transcript profiles in the striatum. Conclusions: Our findings are compatible with the working hypothesis that inherited or acquired alternative splicing deficits may promote parkinsonism, and we propose adaptive alternative splicing as a strategy for attenuating its progression.
Original language | American English |
---|---|
Pages (from-to) | 87-98 |
Number of pages | 12 |
Journal | Neurodegenerative Diseases |
Volume | 9 |
Issue number | 2 |
DOIs | |
State | Published - Feb 2012 |
Keywords
- Acetylcholinesterase
- Alternative splicing
- Animal models
- Brain
- Parkinson's disease