TY - JOUR
T1 - ADHFe1
T2 - A novel enzyme involved in retinoic acid-dependent Hox activation
AU - Shabtai, Yehuda
AU - Shukrun, Natalie
AU - Fainsod, Abraham
N1 - Publisher Copyright:
© 2017 UPV/EHU Press.
PY - 2017
Y1 - 2017
N2 - Retinoic acid (RA) signaling is a central pathway regulating anterior-posterior patterning of the embryo through its targets, the Hox genes. RA is produced by two sequential oxidations from vitamin A (retinol) and this biosynthesis has to be regulated temporally, spatially and quantitatively. Mining Xenopus embryonic expression databases identified a novel component of the RA metabolic network, ADHFe1. Using Xenopus laevis embryos as our experimental system we determined the temporal and spatial pattern of AdhFe1 expression. Gain- and loss-of-function of ADHFe1 were induced to study its function and the regulation of the AdhFe1 gene by RA was studied. Expression analysis localized the ADHFe1 protein to the late Spemann’s organizer, the trunk organizer. Subsequently, ADHFe1 can be detected in the prechordal mesoderm, the notochord and the lateral plate mesoderm. Manipulation of ADHFe1 levels affects the normal Hox gene expression. The effects of ADHFe1 manipulation can by rescued by increasing the levels of RA or its biosynthesis. Expression of the AdhFe1 gene is regulated by RA itself. ADHFe1 is an enzyme active already during gastrula stages and the protein is still present during neurula stages. ADHFe1 regulates the expression of the Hox genes during the early patterning of the trunk. The effect of ADHFe1 on Hox expression is mediated through regulation of RA levels. ADHFe1 probably reduces retinaldehyde to retinol thereby restricting the availability of retinaldehyde, the substrate needed by retinaldehyde dehydrogenases to produce RA making it a novel regulator of RA concentrations in the embryo and RA homeostasis.
AB - Retinoic acid (RA) signaling is a central pathway regulating anterior-posterior patterning of the embryo through its targets, the Hox genes. RA is produced by two sequential oxidations from vitamin A (retinol) and this biosynthesis has to be regulated temporally, spatially and quantitatively. Mining Xenopus embryonic expression databases identified a novel component of the RA metabolic network, ADHFe1. Using Xenopus laevis embryos as our experimental system we determined the temporal and spatial pattern of AdhFe1 expression. Gain- and loss-of-function of ADHFe1 were induced to study its function and the regulation of the AdhFe1 gene by RA was studied. Expression analysis localized the ADHFe1 protein to the late Spemann’s organizer, the trunk organizer. Subsequently, ADHFe1 can be detected in the prechordal mesoderm, the notochord and the lateral plate mesoderm. Manipulation of ADHFe1 levels affects the normal Hox gene expression. The effects of ADHFe1 manipulation can by rescued by increasing the levels of RA or its biosynthesis. Expression of the AdhFe1 gene is regulated by RA itself. ADHFe1 is an enzyme active already during gastrula stages and the protein is still present during neurula stages. ADHFe1 regulates the expression of the Hox genes during the early patterning of the trunk. The effect of ADHFe1 on Hox expression is mediated through regulation of RA levels. ADHFe1 probably reduces retinaldehyde to retinol thereby restricting the availability of retinaldehyde, the substrate needed by retinaldehyde dehydrogenases to produce RA making it a novel regulator of RA concentrations in the embryo and RA homeostasis.
KW - Alcohol dehydrogenase
KW - Anterior-posterior patterning
KW - Hydroxyacid-oxoacid transhydrogenase
KW - Xenopus
UR - http://www.scopus.com/inward/record.url?scp=85020279798&partnerID=8YFLogxK
U2 - 10.1387/ijdb.160252af
DO - 10.1387/ijdb.160252af
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 28621427
AN - SCOPUS:85020279798
SN - 0214-6282
VL - 61
SP - 303
EP - 310
JO - International Journal of Developmental Biology
JF - International Journal of Developmental Biology
IS - 3-5
ER -