Adjustments to Climate Perturbations—Mechanisms, Implications, Observational Constraints

Johannes Quaas*, Timothy Andrews, Nicolas Bellouin, Karoline Block, Olivier Boucher, Paulo Ceppi, Guy Dagan, Sabine Doktorowski, Hannah Marie Eichholz, Piers Forster, Tom Goren, Edward Gryspeerdt, Øivind Hodnebrog, Hailing Jia, Ryan Kramer, Charlotte Lange, Amanda C. Maycock, Johannes Mülmenstädt, Gunnar Myhre, Fiona M. O’ConnorRobert Pincus, Bjørn Hallvard Samset, Fabian Senf, Keith P. Shine, Chris Smith, Camilla Weum Stjern, Toshihiko Takemura, Velle Toll, Casey J. Wall

*Corresponding author for this work

Research output: Contribution to journalReview articlepeer-review

Abstract

Since the 5th Assessment Report of the Intergovernmental Panel on Climate Change (AR5) an extended concept of the energetic analysis of climate change including forcings, feedbacks and adjustment processes has become widely adopted. Adjustments are defined as processes that occur in response to the introduction of a climate forcing agent, but that are independent of global-mean surface temperature changes. Most considered are the adjustments that impact the Earth energy budget and strengthen or weaken the instantaneous radiative forcing due to the forcing agent. Some adjustment mechanisms also impact other aspects of climate not related to the Earth radiation budget. Since AR5 and a following description by Sherwood et al. (2015, https://doi.org/10.1175/bams-d-13-00167.1), much research on adjustments has been performed and is reviewed here. We classify the adjustment mechanisms into six main categories, and discuss methods of quantifying these adjustments in terms of their potentials, shortcomings and practicality. We furthermore describe aspects of adjustments that act beyond the energetic framework, and we propose new ideas to observe adjustments or to make use of observations to constrain their representation in models. Altogether, the problem of adjustments is now on a robust scientific footing, and better quantification and observational constraint is possible. This allows for improvements in understanding and quantifying climate change.

Original languageEnglish
Article numbere2023AV001144
JournalAGU Advances
Volume5
Issue number5
DOIs
StatePublished - Oct 2024

Bibliographical note

Publisher Copyright:
© 2024. The Author(s).

Keywords

  • adjustment
  • climate change
  • feedback
  • forcing

Fingerprint

Dive into the research topics of 'Adjustments to Climate Perturbations—Mechanisms, Implications, Observational Constraints'. Together they form a unique fingerprint.

Cite this