Abstract
We present AERO, a audio super-resolution model that processes speech and music signals in the spectral domain. AERO is based on an encoder-decoder architecture with UNet like skip connections. We optimize the model using both time and frequency domain loss functions. Specifically, we consider a set of reconstruction losses together with perceptual ones in the form of adversarial and feature discriminator loss functions. To better handle phase information the proposed method operates over the complex-valued spectrogram using two separate channels. Unlike prior work which mainly considers low and high frequency concatenation for audio super-resolution, the proposed method directly predicts the full frequency range. We demonstrate high performance across a wide range of sample rates considering both speech and music. AERO outperforms the evaluated baselines considering Log-Spectral Distance, ViSQOL, and the subjective MUSHRA test. Audio samples and code are available Blue here.
Original language | English |
---|---|
Title of host publication | ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing, Proceedings |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 1-5 |
Number of pages | 5 |
ISBN (Electronic) | 9781728163277 |
DOIs | |
State | Published - 2023 |
Event | 48th IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2023 - Rhodes Island, Greece Duration: 4 Jun 2023 → 10 Jun 2023 |
Publication series
Name | ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings |
---|---|
Volume | 2023-June |
ISSN (Print) | 1520-6149 |
Conference
Conference | 48th IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2023 |
---|---|
Country/Territory | Greece |
City | Rhodes Island |
Period | 4/06/23 → 10/06/23 |
Bibliographical note
Publisher Copyright:© 2023 IEEE.
Keywords
- audio super-resolution
- bandwidth extension
- speech synthesis