Aid of a machine learning algorithm can improve clinician predictions of patient quality of life during breast cancer treatments

Mikko Nuutinen*, Anna Maria Hiltunen, Sonja Korhonen, Ira Haavisto, Paula Poikonen-Saksela, Johanna Mattson, Georgios Manikis, Haridimos Kondylakis, Panagiotis Simos, Ketti Mazzocco, Ruth Pat-Horenczyk, Berta Sousa, Fatima Cardoso, Isabel Manica, Ian Kudel, Riikka Leena Leskelä

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review


Background: Proper and well-timed interventions may improve breast cancer patient adaptation and quality of life (QoL) through treatment and recovery. The challenge is to identify those patients who would benefit most from a particular intervention. The aim of this study was to measure whether the machine learning prediction incorporated in the clinical decision support system (CDSS) improves clinicians’ performance to predict patients’ QoL during treatment process. Methods: We conducted two user experiments in which clinicians used a CDSS to predict QoL of breast cancer patients. In both experiments each patient was evaluated both with and without the aid of a machine learning (ML) prediction. In Experiment I, 60 breast cancer patients were evaluated by 6 clinicians. In Experiment II, 90 patients were evaluated by 9 clinicians. The task of clinicians was to predict the patient’s quality of life at either 6 (Experiment I) or 12 months post-diagnosis (Experiment II). Results: Taking into account input from the machine learning prediction considerably improved clinicians’ prediction accuracy. Accuracy of clinicians for predicting QoL of patients at 6 months post-diagnosis was.745 (95% CI.668–.821) with the aid of the prediction provided by the ML model and.696 (95% CI.608–.781) without the aid. Clinicians’ prediction accuracy at 12 months was.739 (95% CI.667–.812) with the aid and.709 (95% CI.633–.783) without the aid. Conclusion: The results show that the machine learning model integrated into the CDSS can improve clinicians’ performance in predicting patients’ quality of life.

Original languageAmerican English
Pages (from-to)229-244
Number of pages16
JournalHealth and Technology
Issue number2
StatePublished - Mar 2023

Bibliographical note

Publisher Copyright:
© 2023, The Author(s) under exclusive licence to International Union for Physical and Engineering Sciences in Medicine (IUPESM).


  • Breast cancer
  • Clinical decision support system
  • Machine learning
  • Quality of life
  • User experiment


Dive into the research topics of 'Aid of a machine learning algorithm can improve clinician predictions of patient quality of life during breast cancer treatments'. Together they form a unique fingerprint.

Cite this