TY - JOUR
T1 - Alkalinization of the food vacuole of malaria parasites by quinoline drugs and alkylamines is not correlated with their antimalarial activity
AU - Ginsburg, Hagai
AU - Nissani, Edna
AU - Krugliak, Miriam
PY - 1989/8/15
Y1 - 1989/8/15
N2 - Quinoline-containing antimalarial drugs accumulate inside the acid food vacuole of the parasite where they inhibit the digestion of ingested host cell cytosol, and consequently, parasite growth. In order to verify whether this inhibition is caused by drug-induced alkalinization of the food vacuole, we investigated the accumulation of acridine orange (AO) as a vacuolar pH probe in intact Plasmodium falciparum-infected human erythrocytes as affected by the drugs chloroquine (CQ), 7H-quinoleine (7HQ), quinine (Q) and mefloquine (MQ). It was established by various criteria that AO accumulates primarily in the acid compartment(s) of the parasite as a function of the pH difference between it and the extracellular medium. This pH gradient was dissipated by the drugs in the rank order MQ > CQ > Q > 7HQ. The kinetics of vacuolar alkalinization and the concentration ranges at which it was observed imply that the monoprotic drugs MQ and Q exerted their effect mostly by translocating protons across the vacuolar membrane, i.e. they could cross the membrane as a protonated species, while the diprotic drugs CQ and 7HQ raised the vacuolar pH mostly by proton trapping. Similarly, hydrophobic alkylamines raised the vacuolar pH by proton translocation, while their relatively more polar congeners and ammonia did so by proton titration. However, the alkalinizing effect of each drug was observed at a concentration which was 1-2 orders of magnitude larger than the IC50 of its antimalarial effect. These results mean that vacuolar alkalinization is not the primary effect of antiparasitic action of quinoline antimalarials.
AB - Quinoline-containing antimalarial drugs accumulate inside the acid food vacuole of the parasite where they inhibit the digestion of ingested host cell cytosol, and consequently, parasite growth. In order to verify whether this inhibition is caused by drug-induced alkalinization of the food vacuole, we investigated the accumulation of acridine orange (AO) as a vacuolar pH probe in intact Plasmodium falciparum-infected human erythrocytes as affected by the drugs chloroquine (CQ), 7H-quinoleine (7HQ), quinine (Q) and mefloquine (MQ). It was established by various criteria that AO accumulates primarily in the acid compartment(s) of the parasite as a function of the pH difference between it and the extracellular medium. This pH gradient was dissipated by the drugs in the rank order MQ > CQ > Q > 7HQ. The kinetics of vacuolar alkalinization and the concentration ranges at which it was observed imply that the monoprotic drugs MQ and Q exerted their effect mostly by translocating protons across the vacuolar membrane, i.e. they could cross the membrane as a protonated species, while the diprotic drugs CQ and 7HQ raised the vacuolar pH mostly by proton trapping. Similarly, hydrophobic alkylamines raised the vacuolar pH by proton translocation, while their relatively more polar congeners and ammonia did so by proton titration. However, the alkalinizing effect of each drug was observed at a concentration which was 1-2 orders of magnitude larger than the IC50 of its antimalarial effect. These results mean that vacuolar alkalinization is not the primary effect of antiparasitic action of quinoline antimalarials.
UR - http://www.scopus.com/inward/record.url?scp=0024375736&partnerID=8YFLogxK
U2 - 10.1016/0006-2952(89)90550-9
DO - 10.1016/0006-2952(89)90550-9
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 2669763
AN - SCOPUS:0024375736
SN - 0006-2952
VL - 38
SP - 2645
EP - 2654
JO - Biochemical Pharmacology
JF - Biochemical Pharmacology
IS - 16
ER -