TY - JOUR
T1 - Amplified surface plasmon resonance based DNA biosensors, aptasensors, and Hg2+ sensors using hemin/G-quadruplexes and Au nanoparticles
AU - Pelossof, Gilad
AU - Tel-Vered, Ran
AU - Liu, Xiao Qing
AU - Willner, Itamar
PY - 2011/8/1
Y1 - 2011/8/1
N2 - Thiolated nucleic acid hairpin nanostructures that include in their stem region a "caged" G-quadruplex sequence, and in their single-stranded loop region oligonucleotide recognition sequences for DNA, adenosine monophosphate (AMP), or Hg2+ ions were linked to bare Au surfaces or to Au nanoparticles (NPs) linked to Au surfaces. The opening of the hairpin nanostructures associated with the bare Au surface by the complementary target DNA, AMP substrate, or Hg2+ ions, in the presence of hemin, led to the self-assembly of hemin/G-quadruplexes on the surface. The resulting dielectric changes on the surface exhibited shifts in the surface plasmon resonance (SPR) spectra, thus providing a readout signal for the recognition events. A similar opening of the hairpin nanostructures, immobilized on the Au NPs associated with the Au surface, by the DNA, AMP, or Hg2+ led to an ultrasensitive SPR-amplified detection of the respective analytes. The amplification originated from the coupling between the localized surface plasmon associated with the NPs and the surface plasmon wave, an effect that cooperatively amplifies the SPR shifts that result from the formation of the hemin/G-quadruplexes. The different sensing platforms reveal impressive sensitivities and selectivities toward the target analytes.
AB - Thiolated nucleic acid hairpin nanostructures that include in their stem region a "caged" G-quadruplex sequence, and in their single-stranded loop region oligonucleotide recognition sequences for DNA, adenosine monophosphate (AMP), or Hg2+ ions were linked to bare Au surfaces or to Au nanoparticles (NPs) linked to Au surfaces. The opening of the hairpin nanostructures associated with the bare Au surface by the complementary target DNA, AMP substrate, or Hg2+ ions, in the presence of hemin, led to the self-assembly of hemin/G-quadruplexes on the surface. The resulting dielectric changes on the surface exhibited shifts in the surface plasmon resonance (SPR) spectra, thus providing a readout signal for the recognition events. A similar opening of the hairpin nanostructures, immobilized on the Au NPs associated with the Au surface, by the DNA, AMP, or Hg2+ led to an ultrasensitive SPR-amplified detection of the respective analytes. The amplification originated from the coupling between the localized surface plasmon associated with the NPs and the surface plasmon wave, an effect that cooperatively amplifies the SPR shifts that result from the formation of the hemin/G-quadruplexes. The different sensing platforms reveal impressive sensitivities and selectivities toward the target analytes.
KW - DNA
KW - aptamers
KW - mercury
KW - sensors
KW - surface plasmon resonance
UR - http://www.scopus.com/inward/record.url?scp=79960829689&partnerID=8YFLogxK
U2 - 10.1002/chem.201100601
DO - 10.1002/chem.201100601
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 21726008
AN - SCOPUS:79960829689
SN - 0947-6539
VL - 17
SP - 8904
EP - 8912
JO - Chemistry - A European Journal
JF - Chemistry - A European Journal
IS - 32
ER -