Abstract
Network games (NGs) are played on directed graphs and are extensively used in network design and analysis. Search problems for NGs include finding special strategy profiles such as a Nash equilibrium and a globally optimal solution. The networks modeled by NGs may be huge. In formal verification, abstraction has proven to be an extremely effective technique for reasoning about systems with big and even infinite state spaces. We describe an abstraction-refinement methodology for reasoning about NGs. Our methodology is based on an abstraction function that maps the state space of an NG to a much smaller state space. We search for a global optimum and a Nash equilibrium by reasoning on an under- and an overapproximation defined on top of this smaller state space. When the approximations are too coarse to find such profiles, we refine the abstraction function. Our experimental results demonstrate the efficiency of the methodology.
Original language | English |
---|---|
Title of host publication | 26th International Joint Conference on Artificial Intelligence, IJCAI 2017 |
Editors | Carles Sierra |
Publisher | International Joint Conferences on Artificial Intelligence |
Pages | 70-76 |
Number of pages | 7 |
ISBN (Electronic) | 9780999241103 |
DOIs | |
State | Published - 2017 |
Event | 26th International Joint Conference on Artificial Intelligence, IJCAI 2017 - Melbourne, Australia Duration: 19 Aug 2017 → 25 Aug 2017 |
Publication series
Name | IJCAI International Joint Conference on Artificial Intelligence |
---|---|
Volume | 0 |
ISSN (Print) | 1045-0823 |
Conference
Conference | 26th International Joint Conference on Artificial Intelligence, IJCAI 2017 |
---|---|
Country/Territory | Australia |
City | Melbourne |
Period | 19/08/17 → 25/08/17 |
Bibliographical note
Funding Information:∗The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013, ERC grant no 278410) and the Austrian Science Fund (FWF) under grants S11402-N23 (RiSE/SHiNE) and Z211-N23 (Wittgenstein Award).