Abstract
Sensitization is a simple form of behavioral plasticity by which an initial stimulus, often signaling danger, leads to increased responsiveness to subsequent stimuli. Cross-modal sensitization is an important feature of arousal in many organisms, yet its molecular and neural mechanisms are incompletely understood. Here we show that in C. elegans, aversive mechanical stimuli lead to both enhanced locomotor activity and sensitization of aversive chemosensory pathways. Both locomotor arousal and cross-modal sensitization depend on the release of FLP-20 neuropeptides from primary mechanosensory neurons and on their receptor FRPR-3. Surprisingly, the critical site of action of FRPR-3 for both sensory and locomotor arousal is RID, a single neuroendocrine cell specialized for the release of neuropeptides that responds to mechanical stimuli in a FLP-20-dependent manner. Thus, FLP-20 peptides function as an afferent arousal signal that conveys mechanosensory information to central neurons that modulate arousal and other behavioral states. Video Abstract:[Figure presented] Arousal is an important conserved behavioral state where animals show increased sensory responsiveness and locomotor hyperactivity. Chew et al. identify a neuromodulatory pathway that enables mechanosensory neurons to promote both sensory and locomotor arousal via activation of a neuroendocrine center.
Original language | English |
---|---|
Pages (from-to) | 1233-1246.e6 |
Journal | Neuron |
Volume | 99 |
Issue number | 6 |
DOIs | |
State | Published - 19 Sep 2018 |
Bibliographical note
Publisher Copyright:© 2018 MRC Laboratory of Molecular Biology
Keywords
- C. elegans
- arousal
- behavioral states
- neuropeptides
- sensitization