An Amygdala-Hippocampus Subnetwork that Encodes Variation in Human Mood

Lowry A. Kirkby, Francisco J. Luongo, Morgan B. Lee, Mor Nahum, Thomas M. Van Vleet, Vikram R. Rao, Heather E. Dawes, Edward F. Chang*, Vikaas S. Sohal

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

100 Scopus citations


Human brain networks that encode variation in mood on naturalistic timescales remain largely unexplored. Here we combine multi-site, semi-chronic, intracranial electroencephalography recordings from the human limbic system with machine learning methods to discover a brain subnetwork that correlates with variation in individual subjects’ self-reported mood over days. First we defined the subnetworks that influence intrinsic brain dynamics by identifying regions that showed coordinated changes in spectral coherence. The most common subnetwork, found in 13 of 21 subjects, was characterized by β-frequency coherence (13-30 Hz) between the amygdala and hippocampus. Increased variability of this subnetwork correlated with worsening mood across these 13 subjects. Moreover, these subjects had significantly higher trait anxiety than the 8 of 21 for whom this amygdala-hippocampus subnetwork was absent. These results demonstrate an approach for extracting network-behavior relationships from complex datasets, and they reveal a conserved subnetwork associated with a psychological trait that significantly influences intrinsic brain dynamics and encodes fluctuations in mood.

Original languageAmerican English
Pages (from-to)1688-1700.e14
Issue number6
StatePublished - 29 Nov 2018
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2018 Elsevier Inc.


  • amygdala
  • brain networks
  • coherence
  • hippocampus
  • human brain
  • intracranial electroencephalography
  • machine learning
  • mood
  • β-frequency


Dive into the research topics of 'An Amygdala-Hippocampus Subnetwork that Encodes Variation in Human Mood'. Together they form a unique fingerprint.

Cite this