TY - JOUR
T1 - An application of ergodic theory to a problem in geometric Ramsey theory
AU - Ziegler, Tamar
PY - 1999
Y1 - 1999
N2 - Let E be a measurable subset of ℝk, k > 2, with D̄(E) > 0. Let V = {0, v1,..., vk+1} ∈ ℝk, where v1,..., vk+1 are affinely independent. We show that for r large enough, we can find an isometric copy of rV arbitrarily close to E. This is a generalization of a theorem of Furstenberg, Katznelson and Weiss [FKW] showing a similar property for ℝ2, V = {0, v1, v2}.
AB - Let E be a measurable subset of ℝk, k > 2, with D̄(E) > 0. Let V = {0, v1,..., vk+1} ∈ ℝk, where v1,..., vk+1 are affinely independent. We show that for r large enough, we can find an isometric copy of rV arbitrarily close to E. This is a generalization of a theorem of Furstenberg, Katznelson and Weiss [FKW] showing a similar property for ℝ2, V = {0, v1, v2}.
UR - http://www.scopus.com/inward/record.url?scp=0039446470&partnerID=8YFLogxK
U2 - 10.1007/BF02785583
DO - 10.1007/BF02785583
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:0039446470
SN - 0021-2172
VL - 114
SP - 271
EP - 288
JO - Israel Journal of Mathematics
JF - Israel Journal of Mathematics
ER -