An efficient analytical reduction of detailed nonlinear neuron models

Oren Amsalem*, Guy Eyal, Noa Rogozinski, Michael Gevaert, Pramod Kumbhar, Felix Schürmann, Idan Segev

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

26 Scopus citations

Abstract

Detailed conductance-based nonlinear neuron models consisting of thousands of synapses are key for understanding of the computational properties of single neurons and large neuronal networks, and for interpreting experimental results. Simulations of these models are computationally expensive, considerably curtailing their utility. Neuron_Reduce is a new analytical approach to reduce the morphological complexity and computational time of nonlinear neuron models. Synapses and active membrane channels are mapped to the reduced model preserving their transfer impedance to the soma; synapses with identical transfer impedance are merged into one NEURON process still retaining their individual activation times. Neuron_Reduce accelerates the simulations by 40–250 folds for a variety of cell types and realistic number (10,000–100,000) of synapses while closely replicating voltage dynamics and specific dendritic computations. The reduced neuron-models will enable realistic simulations of neural networks at unprecedented scale, including networks emerging from micro-connectomics efforts and biologically-inspired “deep networks”. Neuron_Reduce is publicly available and is straightforward to implement.

Original languageEnglish
Article number288
JournalNature Communications
Volume11
Issue number1
DOIs
StatePublished - 1 Dec 2020

Bibliographical note

Publisher Copyright:
© 2020, The Author(s).

Fingerprint

Dive into the research topics of 'An efficient analytical reduction of detailed nonlinear neuron models'. Together they form a unique fingerprint.

Cite this