Abstract
Unsupervised disentanglement has been shown to be theoretically impossible without inductive biases on the models and the data. As an alternative approach, recent methods rely on limited supervision to disentangle the factors of variation and allow their identifiability. While annotating the true generative factors is only required for a limited number of observations, we argue that it is infeasible to enumerate all the factors of variation that describe a real-world image distribution. To this end, we propose a method for disentangling a set of factors which are only partially labeled, as well as separating the complementary set of residual factors that are never explicitly specified. Our success in this challenging setting, demonstrated on synthetic benchmarks, gives rise to leveraging off-the-shelf image descriptors to partially annotate a subset of attributes in real image domains (e.g. of human faces) with minimal manual effort. Specifically, we use a recent language-image embedding model (CLIP) to annotate a set of attributes of interest in a zero-shot manner and demonstrate state-of-the-art disentangled image manipulation results.
Original language | English |
---|---|
Title of host publication | Advances in Neural Information Processing Systems 34 - 35th Conference on Neural Information Processing Systems, NeurIPS 2021 |
Editors | Marc'Aurelio Ranzato, Alina Beygelzimer, Yann Dauphin, Percy S. Liang, Jenn Wortman Vaughan |
Publisher | Neural information processing systems foundation |
Pages | 9216-9228 |
Number of pages | 13 |
ISBN (Electronic) | 9781713845393 |
State | Published - 2021 |
Event | 35th Conference on Neural Information Processing Systems, NeurIPS 2021 - Virtual, Online Duration: 6 Dec 2021 → 14 Dec 2021 |
Publication series
Name | Advances in Neural Information Processing Systems |
---|---|
Volume | 12 |
ISSN (Print) | 1049-5258 |
Conference
Conference | 35th Conference on Neural Information Processing Systems, NeurIPS 2021 |
---|---|
City | Virtual, Online |
Period | 6/12/21 → 14/12/21 |
Bibliographical note
Publisher Copyright:© 2021 Neural information processing systems foundation. All rights reserved.