An off-axis relativistic jet seen in the long lasting delayed radio flare of the TDE AT 2018hyz

Itai Sfaradi*, Paz Beniamini, Assaf Horesh, Tsvi Piran, Joe Bright, Lauren Rhodes, David R.A. Williams, Rob Fender, James K. Leung, Tara Murphy, Dave A. Green

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

17 Scopus citations

Abstract

The Tidal Disruption Event (TDE) AT 2018hyz exhibited a delayed radio flare almost three years after the stellar disruption. Here, we report new radio observations of the TDE AT 2018hyz with the AMI-LA and ATCA spanning from a month to more than four years after the optical discovery and 200 d since the last reported radio observation. We detected no radio emission from 30-220 d after the optical discovery in our observations at 15.5 GHz down to a 3σ level of <0.14 mJy. The fast-rising, delayed radio flare is observed in our radio data set and continues to rise almost ∼1580 d after the optical discovery. We find that the delayed radio emission, first detected 972 d after optical discovery, evolves as t4.2 ± 0.9, at 15.5 GHz. Here, we present an off-axis jet model that can explain the full set of radio observations. In the context of this model, we require a powerful narrow jet with an isotropic equivalent kinetic energy Ek, iso ∼1055 erg, an opening angle of ∼7°, and a relatively large viewing angle of ∼42°, launched at the time of the stellar disruption. Within our framework, we find that the minimal collimated energy possible for an off-axis jet from AT 2018hyz is Ek ≥ 3 × 1052 erg. Finally, we provide predictions based on our model for the light curve turnover time, and for the proper motion of the radio emitting source.

Original languageEnglish
Pages (from-to)7672-7680
Number of pages9
JournalMonthly Notices of the Royal Astronomical Society
Volume527
Issue number3
DOIs
StatePublished - 1 Jan 2024

Bibliographical note

Publisher Copyright:
© 2023 The Author(s). Published by Oxford University Press on behalf of Royal Astronomical Society.

Keywords

  • radio continuum: transients
  • transients: tidal disruption events

Fingerprint

Dive into the research topics of 'An off-axis relativistic jet seen in the long lasting delayed radio flare of the TDE AT 2018hyz'. Together they form a unique fingerprint.

Cite this