TY - JOUR
T1 - Analogues for Sperner and Erdös-Ko-Rado Theorems For Subspaces of Linear Spaces
AU - Kalai, Gil
PY - 1980
Y1 - 1980
N2 - Abstract: Theorem A. Let (V1, W1), (V2, W2), ..., (Vm, Wm) be m pairs of subspaces of n-dimensional vector Fn such that:. (a) Vi ∩Wi, = {0} for 1 ≤i ≤m;. (b) Vi, ∩Wi, ≠ {0} for 1 ≤i ≠ i ≤m. Then m ≤({black small square}). If moreover, dim Vi≤k ≤ n/2 for i = 1, 2, ..., m, then m ≤({black small square}). Theorem B. Let (V1 W1), ..., (Vm, Wm) be m-pairs of subspaces of Fn, satisfying (a), (b) of the previous theorem and:. (c) dim Vi = k ≤ n/2,. (d) dim (Vi ∩ Vi) ≤ 1 for 1 ≤i ≠ j≤ m, then m≤ ({black small square}).
AB - Abstract: Theorem A. Let (V1, W1), (V2, W2), ..., (Vm, Wm) be m pairs of subspaces of n-dimensional vector Fn such that:. (a) Vi ∩Wi, = {0} for 1 ≤i ≤m;. (b) Vi, ∩Wi, ≠ {0} for 1 ≤i ≠ i ≤m. Then m ≤({black small square}). If moreover, dim Vi≤k ≤ n/2 for i = 1, 2, ..., m, then m ≤({black small square}). Theorem B. Let (V1 W1), ..., (Vm, Wm) be m-pairs of subspaces of Fn, satisfying (a), (b) of the previous theorem and:. (c) dim Vi = k ≤ n/2,. (d) dim (Vi ∩ Vi) ≤ 1 for 1 ≤i ≠ j≤ m, then m≤ ({black small square}).
UR - http://www.scopus.com/inward/record.url?scp=77957760766&partnerID=8YFLogxK
U2 - 10.1016/S0167-5060(08)70049-9
DO - 10.1016/S0167-5060(08)70049-9
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:77957760766
SN - 0167-5060
VL - 9
SP - 135
JO - Annals of Discrete Mathematics
JF - Annals of Discrete Mathematics
IS - C
ER -