Analogues for Sperner and Erdös-Ko-Rado Theorems For Subspaces of Linear Spaces

Gil Kalai*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

Abstract: Theorem A. Let (V1, W1), (V2, W2), ..., (Vm, Wm) be m pairs of subspaces of n-dimensional vector Fn such that:. (a) Vi ∩Wi, = {0} for 1 ≤i ≤m;. (b) Vi, ∩Wi, ≠ {0} for 1 ≤i ≠ i ≤m. Then m ≤({black small square}). If moreover, dim Vi≤k ≤ n/2 for i = 1, 2, ..., m, then m ≤({black small square}). Theorem B. Let (V1 W1), ..., (Vm, Wm) be m-pairs of subspaces of Fn, satisfying (a), (b) of the previous theorem and:. (c) dim Vi = k ≤ n/2,. (d) dim (Vi ∩ Vi) ≤ 1 for 1 ≤i ≠ j≤ m, then m≤ ({black small square}).

Original languageEnglish
Pages (from-to)135
Number of pages1
JournalAnnals of Discrete Mathematics
Volume9
Issue numberC
DOIs
StatePublished - 1980

Fingerprint

Dive into the research topics of 'Analogues for Sperner and Erdös-Ko-Rado Theorems For Subspaces of Linear Spaces'. Together they form a unique fingerprint.

Cite this