Abstract
The amplified detection of DNA or of single-base mismatches in DNA is achieved by the use of nucleic acid-functionalized magnetic particles that separate the recognition duplexes and, upon amplification, yield chemiluminescence-generating DNAzymes as reporter units. The analysis of M13 phage ssDNA is achieved by the hybridization of the analyte to capture nucleic acid-functionalized magnetic particles followed by the binding of a DNA machine unit to the analyte domain. The magnetic separation of the multi-component- functionalized magnetic particles, followed by their reaction with polymerase, dNTPs, and the nicking enzyme (Nb.BbvCI) activate the autonomous synthesis of the horseradish peroxidase-mimicking DNAzyme that acts as chemiluminescent reporter. The single-base mutation in DNA is achieved by coupling of the DNA machine to the mutant DNA/capture nucleic acid-functionalized magnetic particles hybrid structure. The activation of the polymerization/nicking cycles yield the chemiluminescent reporting DNAzyme. The magnetic separation of the DNA recognition hybrids improves the signal-to-noise ratio of the analytical protocol as compared to related DNAzyme synthesizing schemes.
Original language | English |
---|---|
Pages (from-to) | 923-927 |
Number of pages | 5 |
Journal | Analyst |
Volume | 133 |
Issue number | 7 |
DOIs | |
State | Published - 2008 |