Anharmonic vibrational spectroscopy calculations for (NH3)(HF) and (NH3)(DF): Fundamental, overtone, and combination transitions

Carrie A. Brindle, Galina M. Chaban, R. Benny Gerber, Kenneth C. Janda*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

18 Scopus citations

Abstract

In order to study the effects of hydrogen bonding on the spectroscopic properties of (NH3)(HF) and (NH3)(DF) complexes, vibrational spectra (including fundamental, overtone and combination transitions) were calculated using the vibrational self consistent field (VSCF) method. This ab initio VSCF method accounts for both one-dimensional anharmonicity and pair-wise mode-mode couplings for all vibrational modes of the molecule, using points on the potential energy surface (at the MP2/TZP level of theory in this study). An analysis of the coupling strength shows surprisingly important coupling effects from pair-wise interactions not expected to be major. This indicates the benefits of including all pair-wise mode-mode couplings for weakly bound systems. Hydrogen bonding induces ∼20% red shifts for the HF and DF stretch frequencies. The corrections due to anharmonicity for these modes are -6% and -5%, respectively. The anharmonic corrections for the intermolecular stretch of (NH3)(HF) and (NH3)(DF) are each about -5%. The NH3 umbrella motion has virtually no anharmonic correction in the complex, whereas free ammonia experiences a -15% correction. Also, the closing motion as well as the opening motion is restricted. The 1 + 1 combination transition of the proton stretching and intermolecular stretching modes has remarkably large intensity, larger even than the intensities for the first overtone of the proton stretching modes. The anharmonic frequency for the fundamental HF stretch, 3268 cm-1, is in good agreement with the experimental gas phase result, 3215 cm-1. A comparison to solid rare-gas matrix data shows that the VSCF frequencies are a consistent improvement over the harmonic approximation. The experimental data also support the use of the MP2 level of theory for the associated electronic structure calculations.

Original languageEnglish
Pages (from-to)945-954
Number of pages10
JournalPhysical Chemistry Chemical Physics
Volume7
Issue number5
DOIs
StatePublished - 7 Mar 2005

Fingerprint

Dive into the research topics of 'Anharmonic vibrational spectroscopy calculations for (NH3)(HF) and (NH3)(DF): Fundamental, overtone, and combination transitions'. Together they form a unique fingerprint.

Cite this