TY - JOUR
T1 - Anomalous scaling in a model of passive scalar advection
T2 - Exact results
AU - Fairhall, Adrienne L.
AU - Gat, Omri
AU - L’vov, Victor
AU - Procaccia, Itamar
PY - 1996
Y1 - 1996
N2 - Kraichnan’s model of passive scalar advection in which the driving velocity field has fast temporal decorrelation is studied as a case model for understanding the appearance of anomalous scaling in turbulent systems. We demonstrate how the techniques of renormalized perturbation theory lead (after exact resummations) to equations for the statistical quantities that also reveal nonperturbative effects. It is shown that ultraviolet divergences in the diagrammatic expansion translate into anomalous scaling with the inner length acting as the renormalization scale. In this paper, we compute analytically the infinite set of anomalous exponents that stem from the ultraviolet divergences. Notwithstanding these computations, nonperturbative effects furnish a possibility of anomalous scaling based on the outer renormalization scale. The mechanism for this intricate behavior is examined and explained in detail. We show that in the language of L’vov, Procaccia, and Fairhall [Phys. Rev. E 50, 4684, (4684)], the problem is "critical," i.e., the anomalous exponent of the scalar primary field [Formula Presented]. This is precisely the condition that allows for anomalous scaling in the structure functions as well, and we prove that this anomaly must be based on the outer renormalization scale. Finally, we derive the scaling laws that were proposed by Kraichnan for this problem and show that his scaling exponents are consistent with our theory.
AB - Kraichnan’s model of passive scalar advection in which the driving velocity field has fast temporal decorrelation is studied as a case model for understanding the appearance of anomalous scaling in turbulent systems. We demonstrate how the techniques of renormalized perturbation theory lead (after exact resummations) to equations for the statistical quantities that also reveal nonperturbative effects. It is shown that ultraviolet divergences in the diagrammatic expansion translate into anomalous scaling with the inner length acting as the renormalization scale. In this paper, we compute analytically the infinite set of anomalous exponents that stem from the ultraviolet divergences. Notwithstanding these computations, nonperturbative effects furnish a possibility of anomalous scaling based on the outer renormalization scale. The mechanism for this intricate behavior is examined and explained in detail. We show that in the language of L’vov, Procaccia, and Fairhall [Phys. Rev. E 50, 4684, (4684)], the problem is "critical," i.e., the anomalous exponent of the scalar primary field [Formula Presented]. This is precisely the condition that allows for anomalous scaling in the structure functions as well, and we prove that this anomaly must be based on the outer renormalization scale. Finally, we derive the scaling laws that were proposed by Kraichnan for this problem and show that his scaling exponents are consistent with our theory.
UR - http://www.scopus.com/inward/record.url?scp=0000078520&partnerID=8YFLogxK
U2 - 10.1103/PhysRevE.53.3518
DO - 10.1103/PhysRevE.53.3518
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:0000078520
SN - 1063-651X
VL - 53
SP - 3518
EP - 3535
JO - Physical Review E
JF - Physical Review E
IS - 4
ER -