Anomalously Soft Non-Euclidean Springs

Ido Levin, Eran Sharon

Research output: Contribution to journalArticlepeer-review

16 Scopus citations

Abstract

In this work we study the mechanical properties of a frustrated elastic ribbon spring - the non-Euclidean minimal spring. This spring belongs to the family of non-Euclidean plates: it has no spontaneous curvature, but its lateral intrinsic geometry is described by a non-Euclidean reference metric. The reference metric of the minimal spring is hyperbolic, and can be embedded as a minimal surface. We argue that the existence of a continuous set of such isometric minimal surfaces with different extensions leads to a complete degeneracy of the bulk elastic energy of the minimal spring under elongation. This degeneracy is removed only by boundary layer effects. As a result, the mechanical properties of the minimal spring are unusual: the spring is ultrasoft with a rigidity that depends on the thickness t as t7/2 and does not explicitly depend on the ribbon's width. Moreover, we show that as the ribbon is widened, the rigidity may even decrease. These predictions are confirmed by a numerical study of a constrained spring. This work is the first to address the unusual mechanical properties of constrained non-Euclidean elastic objects.

Original languageAmerican English
Article number035502
JournalPhysical Review Letters
Volume116
Issue number3
DOIs
StatePublished - 20 Jan 2016

Bibliographical note

Publisher Copyright:
© 2016 American Physical Society.

Fingerprint

Dive into the research topics of 'Anomalously Soft Non-Euclidean Springs'. Together they form a unique fingerprint.

Cite this