TY - JOUR
T1 - Antagonistic roles of full-length N-cadherin and its soluble BMP cleavage product in neural crest delamination
AU - Shoval, Irit
AU - Ludwig, Andreas
AU - Kalcheim, Chaya
PY - 2007/2
Y1 - 2007/2
N2 - During neural crest ontogeny, an epithelial to mesenchymal transition is necessary for cell emigration from the dorsal neural tube. This process is likely to involve a network of gene activities, which remain largely unexplored. We demonstrate that N-cadherin inhibits the onset of crest delamination both by a cell adhesion-dependent mechanism and by repressing canonical Wnt signaling previously found to be necessary for crest delamination by acting downstream of BMP4. Furthermore, N-cadherin protein, but not mRNA, is normally downregulated along the dorsal tube in association with the onset of crest delamination, and we find that this process is triggered by BMP4. BMP4 stimulates cleavage of N-cadherin into a soluble cytoplasmic fragment via an ADAM10-dependent mechanism. Intriguingly, when overexpressed, the cytoplasmic N-cadherin fragment translocates into the nucleus, stimulates cyclin D1 transcription and crest delamination, while enhancing transcription of β-catenin. CTF2 also rescues the mesenchymal phenotype of crest cells in ADAM10-inhibited neural primordia. Hence, by promoting its cleavage, BMP4 converts N-cadherin inhibition into an activity that is likely to participate, along with canonical Wnt signaling, in the stimulation of neural crest emigration.
AB - During neural crest ontogeny, an epithelial to mesenchymal transition is necessary for cell emigration from the dorsal neural tube. This process is likely to involve a network of gene activities, which remain largely unexplored. We demonstrate that N-cadherin inhibits the onset of crest delamination both by a cell adhesion-dependent mechanism and by repressing canonical Wnt signaling previously found to be necessary for crest delamination by acting downstream of BMP4. Furthermore, N-cadherin protein, but not mRNA, is normally downregulated along the dorsal tube in association with the onset of crest delamination, and we find that this process is triggered by BMP4. BMP4 stimulates cleavage of N-cadherin into a soluble cytoplasmic fragment via an ADAM10-dependent mechanism. Intriguingly, when overexpressed, the cytoplasmic N-cadherin fragment translocates into the nucleus, stimulates cyclin D1 transcription and crest delamination, while enhancing transcription of β-catenin. CTF2 also rescues the mesenchymal phenotype of crest cells in ADAM10-inhibited neural primordia. Hence, by promoting its cleavage, BMP4 converts N-cadherin inhibition into an activity that is likely to participate, along with canonical Wnt signaling, in the stimulation of neural crest emigration.
KW - Adherens junctions
KW - Cell cycle
KW - Epithelial to mesenchymal transition
KW - Quail
KW - Wnt
KW - β-catenin
UR - http://www.scopus.com/inward/record.url?scp=33847419865&partnerID=8YFLogxK
U2 - 10.1242/dev.02742
DO - 10.1242/dev.02742
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 17185320
AN - SCOPUS:33847419865
SN - 0950-1991
VL - 134
SP - 491
EP - 501
JO - Journal of Embryology and Experimental Morphology
JF - Journal of Embryology and Experimental Morphology
IS - 3
ER -